• Title/Summary/Keyword: 복합공진

Search Result 140, Processing Time 0.03 seconds

Influence of Applied Electric Fields and Drive Frequencies on The Actuating Displacement of a Plate-type Piezoelectric Composite Actuator (평판형 압전 복합재료 작동기의 작동 변위에 미치는 인가전압 및 구동주파수의 영향)

  • Goo Nam-Seo;Woo Sung-Choong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.576-584
    • /
    • 2006
  • The actuating performance test of plate-type piezoelectric composite actuators having different lay-up sequences was experimentally carried out at simply supported and fixed-free boundary conditions. The actuating displacement of manufactured plate-type piezoelectric composite actuator (PCA) was measured using a non-contact laser displacement measurement system. Our results revealed that the actuating displacement with increasing applied electric field at a drive frequency of 1Hz increased non-linearly at the simply supported boundary condition whereas it almost linearly increased at the fixed-free boundary condition. On the other hand, the actuating displacement of piezoelectric composite actuator depended on the applied electric field in a drive frequency range from 1Hz to 10Hz, but its behavior was different in higher drive frequencies beyond 15Hz due to the occurrence of resonance. On the basis of the above experimental results, the bending characteristics of PCAs revealed different behavior depending on applied electric fields, drive frequencies as well as boundary conditions. Therefore, by investigating drive frequencies together with applied electric fields, actuating performance can be easily controlled and PCAs which were fabricated for this study will be sufficiently applied to pumping devices.

A Research on the viscous flow and the hydrodynamic force due to the small-amplitude in-phase oscillation of multi-cylinders (복합 원형 실린더군의 저진폭 동위상 진동에 의한 점성유동 및 동유체력에 관한 연구)

  • Sung-Kyun Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.22-28
    • /
    • 1999
  • Small amplitude in-phase oscillations of multi-cylinders are considered both numerically and experimentally. Flow field is separated into inner and outer regions. The basic unsteady solution is obtained analytically and the secondary flow, termed as steady streaming flow, can be obtained numerically by using Finite Volume Code with Panel Method. The Particle Induced Velocimetry, one of whole field measurements, is introduced for comparison with numerical flow visualization quantitatively. Among the algorithms for PIV, the Three Step Vector Searching Technique is applied to reduce CPU time. Small but non-zero damping coefficient, that is important in lightly damped system can be obtained with varying number of bodies and distances.

  • PDF

Development of Lightweight Composite Sub-frame in Automotive Chassis Parts Considering Structure & NVH Performance (구조 및 NVH 성능을 고려한 복합재료 서브프레임 개발)

  • Han, Doo-Heun;Ha, Sung
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • Recently, according to environmental regulations, the automobile industry has been conducting various research on the use of composite materials to increase fuel efficiency. However, there has not been much research on lightweight chassis components. Therefore, in this research, the purpose of this study is to apply composite materials to the sub-frame of chassis components to achieve equivalent levels of stiffness, strength, NVH performance and 50% lightweight compared to the steel sub-frame. First, the Natural frequency of steel and composite specimens was compared to the damping characteristics of composite materials. Then, in this study, the Lay-up Sequence was derived to maximize the stiffness and strength of the sub-frame by applying composite materials. And this lay-up Sequence is proposed to avoid heat shrinkage due to curing during manufacturing. This process was designed based on a FEM structural analysis, and a Natural frequency and frequency response function graph was confirmed based on a modal analysis. The prototype type composite sub-frame was manufactured based on the design and the F.E.M analysis was verified through a modal experiment. Furthermore, it was fitted to the actual vehicle to verify the natural frequency and the indoor noise vibration response, including idling and road noise. This result was confirmed to be equivalent to the steel sub-frame. Finally, the composite sub-frame weight was confirmed to be about 50% of the steel sub-frame.

Resonant fatigue testing of composite rotor blades (공진현상을 이용한 복합재 블레이드의 피로시험)

  • Kee, Youngjung;Lee, Sangwon;Park, Seonkyu
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.2
    • /
    • pp.21-25
    • /
    • 2010
  • Fatigue properties of composite materials are extremely important to design durable and reliable helicopter rotor blades. However, it is very difficult to apply conventional fatigue test loads in short period. Therefore, accelerating test speed and facilitating spectrum load realization are required. In this study, we have developed a fatigue testing method that uses a resonance of simply supported beam type blade specimen. This test consists in exciting the blade specimen with a frequency that corresponds to its natural frequency. In that case, the test specimen similar to a beam fixed between two pivot points starts vibrating and is significantly deformed. Resonant fatigue tests were performed by changing exciting vertical amplitude and frequency, and S-N curves of each composite materials were successfully obtained.

  • PDF

압전소자의 소성과 특성에 관하여

  • 박창엽;송동범
    • 전기의세계
    • /
    • v.28 no.2
    • /
    • pp.23-28
    • /
    • 1979
  • 압전 세라믹 소자는 강유전성 세라믹에 높은 직류전압을 가한 후에 나타나는 압전효과를 이용하는 것으로 전압을 제거한 후에도 압전효과가 존재하는 것이 강유 전체의 특징이다. 압전효과를 나타내는 것은 천연으로 존재하는 수정이 있고, 인조품으로서는 BaTiO$_{3}$가 2차 대전후 W.P Mason에 의해 연구되어 압전재료로서 사용되었지만 BaTiO$_{3}$는 공진주파수의 온도안정성이 문제가 된다. 그후 B.Jaffe et al.은 P$_{b}$(Z$_{r}$, T$_{i}$)O$_{3}$등 몇가지 복합 Perovskite 산화물 중에서 P$_{b}$(Z$_{r}$, T$_{i}$)O$_{3}$$P^{2+}$$_{b}$ 이온을 다른 이온으로 치환하면 큐리 온도가 변하고 실온에서의 유전율도 크게 변화한다는 것이 밝혀졌다. 여기서 논하고저 하는 것은 압전소자의 제법과 성질 또 이의 특성을 좁은 범위 내에서 소개코저 한다.

  • PDF

Design of the electromagnetic actuator for probe-based data storage (탐침형 정보저장장치 제어용 초정밀 구동기의 설계)

  • Lee, Kyoung-Il;Cho, Jin-Woo;Kim, Seong-Hyun;Choi, Young-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.290-292
    • /
    • 2003
  • 탐침형 고밀도 정보저장장치의 구현에 필수적인 초정밀 구동기의 성능을 개선하기 위해 단순화된 모형을 설정하고 각 설계 변수들이 구동 특성에 미치는 영향을 분석하여 이를 통해 원하는 사양의 구동기를 설계하고 실제 제작을 통해 그 모형의 타당성을 검증하였다. 전자기력을 이용한 구동기는 변위, 공진 주파수 등 여러 조건을 동시에 만족시켜야하나 전자기-기계가 복합적으로 결합된 시스템이므로 그 특성의 이해와 설계를 위해서는 보다 단순화된 모형의 도입이 필요하다. 본 논문에서는 코일부를 단순화하고 자석으로부터 인가되는 평균자기장을 통해 구동 특성을 분석하였으며 이는 실제 제작 결과와 잘 일치하였다.

  • PDF

Fatigue Life Evalution for Composite Blade by Using the Measured Load Spectrum and S-N Linear Damage Method (측정 하중 스펙트럼과 S-N 선형 손상 방법을 이용한 복합재 회전날개의 피로 수명 평가)

  • 공창덕;방조혁;김종식
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.20-20
    • /
    • 1998
  • 풍력발전용 회전날개의 구조설계 요구조건은 크게 제한 강도 요구조건(Limit strength requirement), 강성도 요구조건(Stiffness requirement), 피로수명 요구조건(Fatigue life requirement)의 세 가지를 들 수 있다. 첫째로 제한 강도 요구조건은 운용기간 중에 발생할 수 있는 최대하중에 견딜 수 있어야 하며, 폭풍이나 돌풍의 상황에 대한 안전성을 의미한다. 둘째로 강성도 요구조건은 운용 중 공진을 피하기 위한 고유진동 수확보, 타워와의 충돌을 피하기 위한 변위의 제한, 공력성능의 변화를 피하기 위한 비틀림각의 제한등이 있다 셋째로 피로수명에 대한 요구조건은 요구피로수명 동안에 예상되는 반복하중에 견딜 수 있어야 한다.

  • PDF

A Double Cantilever Sandwich Beam Method far Evaluating Frequency Dependence of Dynamic Modulus and Damping Factor of Rubber Materials (고무의 동탄성계수와 손실계수의 주파수 의존성을 평가하기 위한 양팔 샌드위치보 시험법의 연구)

  • 김광우;박진택;이덕보;최낙삼
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.69-76
    • /
    • 2001
  • This paper proposes a double cantilever sandwich-beam method fur evaluating the frequency dependence of dynamic characteristics of rubbers. The flexural vibration of a double cantilever sandwich-beam specimen with an inserted rubber layer was studied using a finite element simulation in combination with the sine-sweep test. Quadratic relationships of dynamic elastic modulus and material loss factor of rubbers with frequency were suggested employing the least square error method.

  • PDF

Experimental Determinations of Elastic Constants Composite Materials, Carbon-epoxy and Graphite-epoxy, Using Two Dynamic Vibratory Techniques (두 가지 동적 진동실험을 통한 Carbon-epoxy와 Graphite-Epoxy복합재료의 동적 탄성계수 측정)

  • Lee, D.H.;Bahk, S.M.;Park, M.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.596-602
    • /
    • 2001
  • Structures in current use are required of weight reduction and strength in many instances. This naturally necessitates frequent applications of composite materials in many areas. Elastic constants are one of key parameters in determining design guidelines for the specific applications of particular materials. In this research two vibratory techniques (acoustic resonance method and impulse technique)are utilized to evaluate elastic constants. Both techniques are suitable for the measurements of dynamic elastic constants. The Impulse technique provides a quick method for the measurement while the acoustic resonance method produces the values of elastic constants which agree better with theoretical values.

  • PDF

Lateral Vibration of Beams with a Bonded Lap Joint and Partial Layered Dampers (겹침이음부 및 국부적 층댐퍼를 갖는 보의 횡진동 특성)

  • 박정일;최낙삼
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.174-183
    • /
    • 1999
  • An analytical model for the lateral vibration of beams with a bonded lap joint and partial layered dampers has been proposed in this paper. Both shear and normal forces acting along the interface between the elastic and viscoelastic layers were considered in the vibration analysis. Analytical results were compared with those obtained by a finite element method. Effects of the size and location of layers in partial dampers on system loss factor($\eta_s$) and resonant frequency($\omega_r$) were studied. which showed that partial dampers adhered to the site exhibiting the maximum amplitude of vibration were most influential in the increase of $\eta_s$ and the decrease of $\omega_r$. Specific system loss factor( $\eta_s$ divided by total mass of system) was also evaluated in the analysis.

  • PDF