• Title/Summary/Keyword: 복합거동연결체

Search Result 18, Processing Time 0.02 seconds

Experimental Performance Evaluation of Complex Behavior Connector by Scaled Model (축소모형에 의한 복합거동 연결체의 실험적 성능 평가)

  • Kim, Kisung;Kang, Hyounhoi;Park, Jeongjun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.2
    • /
    • pp.130-138
    • /
    • 2017
  • The connector of the complex behavior is to connect the individual piles of the pile to the lower foundation of the oil sand plant where the floating foundation is used. In this study, to verify the shape of a connector of the complex behavior for applying the advantages of existing group pile and piled raft foundation to an oil sand plant, a scaled model was constructed to measure the behavior of the load.

Evaluation of Deformation Characteristics and Vulnerable Parts according to Loading on Compound Behavior Connector (복합거동연결체의 하중재하에 따른 변형 특성 및 취약부위 산정)

  • Kim, Ki-Sung;Kim, Dong-wook;Ahn, Jun-hyuk
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.524-530
    • /
    • 2019
  • Purpose: In this paper, we construct a detailed three-dimensional interface element using a three-dimensional analysis program, and evaluate the composite behavior stability of the connector by applying physical properties such as the characteristics of general members and those of reinforced members Method: The analytical model uses solid elements, including non-linear material behavior, to complete the modeling of beam structures, circular flanges, bolting systems, etc. to the same dimensions as the design drawing, with each member assembled into one composite behavior linkage. In order to more effectively control the uniformity and mesh generation of other element type contact surfaces, the partitioning was performed. Modeled with 50 carbon steel materials. Results: It shows the displacement, deformation, and stress state of each load stage by the contact adjoining part, load loading part, fixed end part, and vulnerable anticipated part by member, and after displacement, deformation, The effect of the stress distribution was verified and the validity of the design was verified. Conclusion: Therefore, if the design support of the micro pile is determined based on this result, it is possible to identify the Vulnerable Parts of the composite behavior connector and the degree of reinforcement.

Finite Element Analysis of the Complex Behavior and Load Bearing Characteristics of a Foundation Pile Connector (유한요소해석을 이용한 복합거동 연결체의 하중지지 특성)

  • Shin, Hee-Soo;Kim, Ki-Sung;Hong, Seung Seo;Kim, YoungSeok;Ahn, Jun-Hyuk
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.451-460
    • /
    • 2019
  • In this study, a complex behavior connector is proposed to overcome the problems that may occur when small pile pipe and micro pile is used as a friction pile concept in the lower foundation of an oil sand plant where a piloti foundation is used. The individual settlement and heaving of piles were connected in one group to allow the composite behavior. This study performed to analyze the load carrying capacity to identify a complex behavior. In addition, the shape of the composite behavior connector was examined to apply the advantages of pile-group and piled raft foundations to oil sand plants. A scale model was constructed to measure the behavior of the load. The stability and weakness of the device were selected to determine the shape of the connector using the scale model testing.

A Study of Statistic Behavior of Segmental U-shaped Prestressed Concrete Girder Applied with Integrated Tensioning Systems (복합긴장방식이 적용된 세그멘탈 U형 거더 정적 거동 연구)

  • Hyunock Jang;Ilyoung Jang
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.329-338
    • /
    • 2024
  • Purpose: This study verified the safety of the improved box-type girder behavior by comparing and evaluating the bending behavior results of a full-scale specimen based on the analytical behavior of the splice element PSC U-shaped girder with integrated tensioning systems. Method: Based on the results of the service and strength limit state design using the bridge design standard(limit state design method), the applied load of a 40m full-scale specimen was calculated and a static loading experiment using the four-point loading method was performed. Result: When the design load, crack load, and ultimate load were applied, the specimen deflection occurred at 97.1%, 98.5%, and 79.0% of the analytical deflection value. When the design load, crack load, and ultimate load were applied, the crack gauge was measured at 0.009~0.035mm, 0.014~0.050mm, and 6.383~5.522mm at each connection. Conclusion: The specimen behaved linear-elastically until the crack load was applied, and after cracks occurred, it showed strainhardening up to the ultimate load, and it was confirmed that the resistance of bending behavior was clearly displayed against the applied load. The cracks in the dry joints were less than 25% of grade B based on the evaluation of facility condition standard. The final residual deformation after removing the ultimate load was 0.114mm, confirming the stable behavior of the segment connection.

Experimental Study on the Composite Bridge Deck of Hollow Section (중공단면 복합소재 교량 바닥판의 시험을 통한 구조적 특성 분석)

  • Lee, Sung-Woo;Kim, Byung-Suk;Hong, Kee-Jeung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.325-335
    • /
    • 2006
  • In this paper, flexural test, girder-connection test and barrier-connection test for the pultruded composite bridge deck of hollow section, were carried out and its structural characteristics were evaluated. In the flexural test specimen, deflection was measured at center of the span and strains were measured at various locations to see the structural behavior up to the failure. In addition, finite element analysis was performed for the flexural test specimen and the results were compared with experiments, and load carrying capacity was evaluated. Also, field load test was conducted for the demonstration plate girder bridge and other field applications were described.

An Experimental Study for Joints in Hybrid PSC-Steel Beam with Perfobond rib (Perfobond rib을 적용한 PSC-강 복합구조 연결부 거동에 대한 실험적 연구)

  • Won, Jeong-Hun;Park, Se-Jun;Yoon, Ji-Hyun;Kim, Sang-Hyo;Lee, Chan-Goo;Kim, Sung-Jae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.17-20
    • /
    • 2008
  • This study presents experimental results of Steel-PSC hybrid beams having a rear plate joint with a perfobond rib shear connector between the steel girder and the prestressed concrete girder. Three specimens of 3.9m length(3.6m span length) were tested to evaluate the flexural characteristics of the joint under the condition of the three point loading. Based on load-deflection curves and failure modes of specimens by the experimental test, it is found that the proposed joint with the perfobond rib shear connector shows the higher strength and initial stiffness and the sufficient ductility. Therefore, the suggested perfobond rib shear connector can perform effectively as the joint of the Steel-PSC hybrid structural system.

  • PDF

Experimental Fatigue Characteristics of Composite Bridge Deck of Hollow Section (중공단면 복합소재 교량 바닥판의 실험적 피로특성 분석)

  • Lee, Sung-Woo;Hong, Kee-Jeung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.337-345
    • /
    • 2006
  • In this study, to evaluate fatigue characteristics of developed composite bridge deck, compression fatigue test at girder support and flexural fatigue test for the 2.8m-long flexural test model were carried out. For the test specimen, DB 24 truck load was applied up to 2,000,000 cycles. In the compression fatigue test, behavior at deck tube and its bonded connection were evaluated. In the flexural fatigue test, deck behavior at mid-span and girder connection were evaluated.

Analysis on the Behaviors of Precast Concrete Beam-Column Connections Subject to Cyclic Loading (반복하중을 받는 프리캐스트 콘크리트 건식 보-기둥 연결부의 거동분석)

  • Song, Hyung-Soo;Yu, Sung-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.497-506
    • /
    • 2006
  • The precast concrete beam-column connectors for the high-rise office buildings were investigated experimentally in this study. The specimens of general precast beam-column connector which is used in a domestic site, specimen of DDC(dywidag ductile connectors) of Germany, and specimen of DDC with post-tensioning and modified DDC with post-tensioning were constructed and tested to verify the safety. The DDC with and without post-tensioning showed reliable joint strength and ductility but failed in critical inclined shear crackings at the column. The modified one showed better behaviors in tests because they did not show critical column crackings at failure. The use of prestressing did not helpful significantly to increase the strength and ductility of connectors but helpful only to develop self-centering behavior for stability.

Analysis Evaluation of Torsional Behavior of Hybrid Truss Bridge according to Connection Systems (격점구조형식에 따른 복합트러스교의 비틀림 거동 해석)

  • Choi, Ji-Hun;Jung, Kwang-Hoe;Kim, Tae-Kyun;Lee, Sang-Won;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.3-12
    • /
    • 2014
  • Hybrid Truss Bridge (HTB) uses steel truss webs instead of concrete webs in prestressed box girder bridges, which is becoming popular due to its structural benefits such as relatively light self-weight and good aesthetics appearance. Since the core technology of this bridge is the connection system between concrete slabs and steel truss members, several connection systems were proposed and experimentally evaluated. Also, the selected joint system was applied to the real bride design and construction. The research was performed on the connection system, since it can affect the global behavior of this bridge such as flexural and fatigue behaviors as well as the local behavior around the connection region. The evaluation study showed that HTB applied to a curved bridge or an eccentrically loaded bridge had a weak torsional capacity compared to an ordinary PSC box girder bridge due to the open cross-sectional characteristic of HTB. Therefore, three types of girders with different joint system between truss web member and concrete slab were tested for their torsional capacity. In this study, the three different types of HTB girders under torsional loading were simulated using FEM analysis to investigate the torsional behavior of HTB girders more in detail. The results are discussed in detail in the paper.

Simulation for the Filling Process of Resin Transfer Molding by Incorporating Composity Grids (복합격자법을 이용한 수지이동성형의 충전공정에 대한수치모사)

  • 이성재
    • The Korean Journal of Rheology
    • /
    • v.9 no.3
    • /
    • pp.103-110
    • /
    • 1997
  • 고분자 복합재료 제조방법의 하나인 수지이동성형의 충전공정을 모사하기 위한 수 치모사 코드를 개발하였다. 수지이동성형의 충정공정문제를 수학적 공식으로 표현하기 위하 여 비등방성 다공질체를 통과하는 유동에 대한 이론을 사용하였다. 과도상태로 진행하는 자 유표면의 동적 충전거동을 묘사하기 위하여 수치격자 생성을 포괄하는 경계적합 좌표계의 계산기법을 적용하였다. 이와 아울러 불규칙적인 구저와 다중으로 연결된 금형면의 충전모 사에 저합한 복합격자의 개념을 도입하였다. 복합격자들 간의 가상의 경계에 대해서는 검사 체적 기법을 이용하여 물질보존을 만족시켜 주었다. 임의의 금형 두께와 투과도를 가지는 다수의 금형면이 결합된 두 개의 입구를 지닌 금형을 대상으로 하여 몇가지 예를 시험해 보 았다. 수치모사의결과 복합격자의 개념을 도입한 수치모사 코드는 수지이동성형의 복잡한 충전공정을 보다 정교하게 모사하는데 응용될수 있음을 보여주었다.

  • PDF