• Title/Summary/Keyword: 복잡한 영상

Search Result 1,870, Processing Time 0.03 seconds

Pre-processing Algorithm for Detection of Steel Product Number in Images (영상에서 철강 제품 번호 검출을 위한 전처리 알고리즘)

  • Koo, Keun-Hwi;Yun, Jong-Pil;Choi, Sung-Hoo;Choi, Jong-Hyun;Kim, Sang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.117-118
    • /
    • 2008
  • 제철소에서 생산된 Slab에는 서로를 구분하기 위해 관리번호가 기재되어 있다. 호스트 컴퓨터에서 보내 온 Slab 관기번호와 제품에 마킹되어 있는 Slab 관리번호의 일치 여부를 확인하기 위하여 자동 인식 시스템이 설치되어 있다. 자동 인식 시스템은 실시간으로 Slab가 없을 때의 영상과 Slab가 있을 때의 영상을 촬영하고 이를 이용하여 Slab 관리 번호를 인식하는 방법으로 구성되어 있다. 제철소 배경 영상이 복잡하고 조명이 계속 바뀌기 때문에 Text Region을 찾는 방법은 Slab 관리 번호를 인식하는데 가장 큰 문제점이다. 본 논문에서는 복잡한 배경을 실시간으로 Training하여 Text Region을 찾기 위한 전처리 과정을 나타내었다. 복잡한 배경 영상을 이용하여 Slab가 위치한 Region을 찾을 수 있고 실시간으로 Training하기 때문에 조명의 영향을 줄일 수 있다.

  • PDF

Visually-Adaptive Quantization method Based on Block DCT (DCT 기반 영상의 시각 적응적 양자화 방법에 관한 연구)

  • 김정현;박성찬;천승환;이귀상
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.604-606
    • /
    • 2000
  • 본 논문에서는 인간의 시각 특성을 고려한 시각 적응적 DCT 영상 압축 방법이 제안되었다. 인간의 시각 체계의 특성 중 복잡한 영사이나 대비효과(contrast)가 큰 부분에서는 압축과정에서 발생한 왜곡이 쉽게 눈에 인지되지 않는 특성을 갖는 공간적 마스킹(spatial masking)을 이용하여 영상의 질을 어느정도 유지하면서 적응적 압축 방법에 의해 압축율을 보다 높이는 방법을 제시하였다. DCT 변환 블록에서 경계영역 정보를 많이 포함하는 부분을 추출한 후 이 영역은 다른 영역에 비해 복잡도가 더 높고 경계성분의 대비효과가 더 크기 때문에 이 영역의 분산을 취해 이 값에 따라 적응적으로 양자화한다. 실험결과, 제안된 영상 압축 알고리즘은 기존의 시각 적응적 압축 방법보다 좋은 성능을 보이며 특히 고주파 성분을 많이 가진 복잡한 영상에 대하여 높은 압축률을 보였다.

  • PDF

Single Image Super-Resolution Using Multi-Layer Linear Mappings (다층 선형 매핑 기반 단일영상 초해상화 기법)

  • Choi, Jae-Seok;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.9-11
    • /
    • 2016
  • 최근 UHDTV(ultra high definition television) 등의 고해상도 디스플레이가 시장에 등장하면서, 기존의 저해상도 FHD(full high definition) 영상을 고해상도 영상으로 변환할 수 있는 초해상화(super-resolution, SR) 기법들이 각광을 받고 있다. 그 중, 선형 매핑(linear mapping)을 사용하여 저해상도 패치(patch)로부터 고해상도 패치를 복원하는 초해상화 기법은 상대적으로 낮은 복잡도로 좋은 품질의 고해상도 영상을 생성한다. 그러나 이러한 기법은 단순한 선형 매핑을 기반으로 하기 때문에 복잡한 비선형적(nonlinear) 저해상도-고해상도 관계를 예측하기 힘든 단점이 있다. 최근 각광받는 딥러닝(deep learning) 기술은 다층(multi-layer) 네트워크를 쌓아 입력과 출력 간의 복잡한 비선형 관계를 훈련시켜 좋은 성능을 보이는데, 이를 바탕으로 본 논문에서는 다중의 레이어로 구성된 다층 선형 매핑(multi-layer linear mappings, MLLM)을 기반으로 하는 초해상화 기법을 새롭게 제안한다. 제안하는 다층 선형 매핑은 기존 선형 매핑보다 비선형적 관계를 더 잘 예측하여 높은 품질의 고해상도 영상을 생성할 수 있게 한다. 제안된 초해상화 기법은 딥러닝 기반 초해상화 기법과 필적하는 품질의 고해상도 영상을 생성하면서도 더 낮은 복잡도를 지니는 것을 확인하였다.

  • PDF

Efficient Preprocessing Method for Binary Centroid Tracker in Cluttered Image Sequences (복잡한 배경영상에서 효과적인 전처리 방법을 이용한 표적 중심 추적기)

  • Cho, Jae-Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.1
    • /
    • pp.48-56
    • /
    • 2006
  • This paper proposes an efficient preprocessing technique for a binary centroid tracker in correlated image sequences. It is known that the following factors determine the performance of the binary centroid target tracker: (1) an efficient real-time preprocessing technique, (2) an exact target segmentation from cluttered background images and (3) an intelligent tracking window sizing, and etc. The proposed centroid tracker consists of an adaptive segmentation method based on novel distance features and an efficient real-time preprocessing technique in order to enhance the distinction between the objects of interest and their local background. Various tracking experiments using synthetic images as well as real Forward-Looking InfraRed (FLIR) images are performed to show the usefulness of the proposed methods.

  • PDF

Face Region Extraction Using Edge and Motion information (에지와 움직임 정보를 이용한 얼굴검출)

  • 박성진;김수현;차형태
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.676-678
    • /
    • 2004
  • 얼굴인식기술이 인증 일 보안을 위한 도구로 활용되고 있지만 입력영상의 상태, 즉 복잡한 배경과 조명환경에 따라 적용할 수 있는 범위가 제약적일 수밖에 없다. 본 논문에서는 이러한 제약을 최소화하기 위한 방법과 좀 더 정확한 얼굴 영역 검출을 위한 기법을 제시한다. 제안된 방법은 움직임에 기반 한 에지 차영상을 이용하여 얼굴 윤곽을 검출한 후 이를 X와 Y축의 프로파일을 이용하여 얼굴영역을 예측한다. 제안된 알고리즘은 복잡한 배경이나 조명등으로 인해 얼굴의 형태가 결여된 입력영상에서도 매우 안정적으로 적용됨을 실험을 통해 확인하였다

  • PDF

Face Detection with Active Contours using Color Information (칼라 정보 기반의 Active Contours를 이용한 얼굴 추출)

  • 장재식;김은이;김항준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.472-474
    • /
    • 2002
  • 본 논문에서는 복잡한 영상에서 얼굴 영역의 윤곽선을 검출하는 방법을 제안하였다. 이를 위하여 얼굴의 칼라 정보에 기반한 액티브 컨투어 모델을 이용하였다. 얼굴의 칼라 정보는 색채칼라 공간(chromatic color space)에서 2D-Gaussian모델로 나타내어지는 스킨 칼로 모델로 표현 되었다. 실험결과 제안된 방법은 복잡한 영상뿐 아니라 잡음이 많은 영상에서 하나 또는 여러 개의 얼굴 영역을 추출할 수 있었다.

  • PDF

Moving Object Segmentation Using the Clustering of Region Trajectories (영역 궤적의 클러스터링을 이용한 비디오 영상에서의 움직이는 객체의 검출)

  • 권영진;이재호;김회율
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.15-18
    • /
    • 2001
  • 동영상에서 움직이는 객체 검출은 동영상의 내용을 표현하고 유사한 동영상을 검색하는 데 있어 중요한 특징간을 추출하는 방법으로 사용된다. 그러나 복잡하게 카메라가 움직이는 동영상에서 움직이는 객체 검출은 아직까지 어려운 과제이다. 본 논문에서는 복잡한 카메라의 움직임이 있는 환경에서 움직이는 객체를 강인하게 검출하는 방법을 제안한다. 움직이는 객체 검출 방법은 입력 영상을 색상간의 클러스터링을 이용하여 각 영역으로 구분하는 Mean Shift 알고리즘과 인접한 프레임에서 구분된 영역을 대응시켜 영역의 모션 벡터를 구하는 영역 매칭, 유사한 궤적을 가지는 영역들의 클러스터링을 이용하여 객체를 검출하는 궤적 클러스터링 알고리즘을 사용한다. 제안한 영역 기반 알고리즘은 기존의 픽셀이나 블록 기반의 방법보다 움직이는 객체를 정확하게 검출하였다. 실험 결과 복잡하게 움직이는 카메라의 환경 속에서 움직이는 객체를 강인하게 검출하였다.

  • PDF

집적 영상을 이용한 홀로그램 생성 기술

  • Park, Jae-Hyeong
    • Broadcasting and Media Magazine
    • /
    • v.16 no.2
    • /
    • pp.51-62
    • /
    • 2011
  • 본고에서는 집적 영상 기술(integral imaging)에 기반한 3차원 물체의 홀로그램 합성 기술을 알아본다. 집적 영상 기술은 비간섭성(incoherent) 광학 기반 기술로서 기존의 복잡한 홀로그램 촬영 방법을 간단화 시킬 수 있는 방법으로 최근 주목을 받고 있다. 본 고에서는 집적 영상 기술과 홀로그래피의 간단한 원리, 집적 영상 기술을 이용한 비간섭성 홀로그램 촬영 기술들을 알아본다.

Shadow Removal via Attention Mechanism and Recurrent Network (주의 매커니즘 기반 피드백 신경망을 이용한 그림자 제거 방법)

  • Kim, Minwoo;Kim, Wonjun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.161-163
    • /
    • 2021
  • 대부분의 영상에 존재하는 그림자는 다양한 딥러닝 기반 영상처리 작업을 수행함에 방해가 되는 요소이다. 영상 내 그림자는 다양한 광원과 다양한 물체들의 상호작용에 의해 복잡하게 생성되며 이를 제거하는 것을 통해 다양한 Computer Vision task의 성능을 향상시킬 수 있다. 이 논문에서는 영상 내 그림자를 감지하여 Attention mechanism을 통해 그림자를 제거하고 Recurrent 하게 작업을 수행하며 복잡한 그림자를 단계적으로 제거하는 네트워크를 구현하였으며, Recurrent 한 네트워크에서 이전 단계의 데이터를 다음 단계에 효율적으로 전달하는 방식에 대한 실험을 수행하였다.

  • PDF

사용자-객체 상호작용을 위한 복잡 배경에서의 객체 인식

  • Bae, Ju-Han;Hwang, Yeong-Bae;Choe, Byeong-Ho;Kim, Hyo-Ju
    • Information and Communications Magazine
    • /
    • v.31 no.3
    • /
    • pp.46-53
    • /
    • 2014
  • 사용자-객체 상호작용을 위해서는 영상 내 객체의 종류와 위치를 정확하게 파악하여 사용자가 객체에 관련된 행동을 취할 경우, 그에 맞는 상호작용을 수행해야 한다. 이러한 객체인식에 널리 사용되는 지역 불변 특징량 기반의 방법론은 복잡한 배경이나 균일 물체에 대하여 잘못된 매칭으로 인식률이 저하된다. 본고에서는 이를 해결하기 위해, 컬러와 깊이 근접도 기반 깊이 계층을 나누고, 복잡 배경으로부터 생기는 잘못된 특징점 대응을 최소화 하기 위해 각 깊이 계층과 인식 물체 영상간의 특징점 대응을 수행한다. 또한, 각 깊이 계층영역에서 색상 히스토그램 재투영으로 객체의 위치를 추정하고 추정 영역과 인식 물체 영상간의 생상 및 깊이 유사도를 판단한다. 최종적으로, 복잡 배경 효과를 최소화한 특징점 대응의 수, 색상 및 컬러 유사도를 고려하여 신뢰도를 측정하여 객체를 인식하게 되며, 이를 통해 복잡한 배경에서도 사용자와 객체간의 유연한 상호작용이 가능해진다.