• Title/Summary/Keyword: 복잡한 영상

Search Result 1,870, Processing Time 0.037 seconds

Mapping and estimating forest carbon absorption using time-series MODIS imagery in South Korea (시계열 MODIS 영상자료를 이용한 산림의 연간 탄소 흡수량 지도 작성)

  • Cha, Su-Young;Pi, Ung-Hwan;Park, Chong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.517-525
    • /
    • 2013
  • Time-series data of Normal Difference Vegetation Index (NDVI) obtained by the Moderate-resolution Imaging Spectroradiometer(MODIS) satellite imagery gives a waveform that reveals the characteristics of the phenology. The waveform can be decomposed into harmonics of various periods by the Fourier transformation. The resulting $n^{th}$ harmonics represent the amount of NDVI change in a period of a year divided by n. The values of each harmonics or their relative relation have been used to classify the vegetation species and to build a vegetation map. Here, we propose a method to estimate the annual amount of carbon absorbed on the forest from the $1^{st}$ harmonic NDVI value. The $1^{st}$ harmonic value represents the amount of growth of the leaves. By the allometric equation of trees, the growth of leaves can be considered to be proportional to the total amount of carbon absorption. We compared the $1^{st}$ harmonic NDVI values of the 6220 sample points with the reference data of the carbon absorption obtained by the field survey in the forest of South Korea. The $1^{st}$ harmonic values were roughly proportional to the amount of carbon absorption irrespective of the species and ages of the vegetation. The resulting proportionality constant between the carbon absorption and the $1^{st}$ harmonic value was 236 tCO2/5.29ha/year. The total amount of carbon dioxide absorption in the forest of South Korea over the last ten years has been estimated to be about 56 million ton, and this coincides with the previous reports obtained by other methods. Considering that the amount of the carbon absorption becomes a kind of currency like carbon credit, our method is very useful due to its generality.

RGB Channel Selection Technique for Efficient Image Segmentation (효율적인 이미지 분할을 위한 RGB 채널 선택 기법)

  • 김현종;박영배
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.10
    • /
    • pp.1332-1344
    • /
    • 2004
  • Upon development of information super-highway and multimedia-related technoiogies in recent years, more efficient technologies to transmit, store and retrieve the multimedia data are required. Among such technologies, firstly, it is common that the semantic-based image retrieval is annotated separately in order to give certain meanings to the image data and the low-level property information that include information about color, texture, and shape Despite the fact that the semantic-based information retrieval has been made by utilizing such vocabulary dictionary as the key words that given, however it brings about a problem that has not yet freed from the limit of the existing keyword-based text information retrieval. The second problem is that it reveals a decreased retrieval performance in the content-based image retrieval system, and is difficult to separate the object from the image that has complex background, and also is difficult to extract an area due to excessive division of those regions. Further, it is difficult to separate the objects from the image that possesses multiple objects in complex scene. To solve the problems, in this paper, I established a content-based retrieval system that can be processed in 5 different steps. The most critical process of those 5 steps is that among RGB images, the one that has the largest and the smallest background are to be extracted. Particularly. I propose the method that extracts the subject as well as the background by using an Image, which has the largest background. Also, to solve the second problem, I propose the method in which multiple objects are separated using RGB channel selection techniques having optimized the excessive division of area by utilizing Watermerge's threshold value with the object separation using the method of RGB channels separation. The tests proved that the methods proposed by me were superior to the existing methods in terms of retrieval performances insomuch as to replace those methods that developed for the purpose of retrieving those complex objects that used to be difficult to retrieve up until now.

Design of Video Pre-processing Algorithm for High-speed Processing of Maritime Object Detection System and Deep Learning based Integrated System (해상 객체 검출 고속 처리를 위한 영상 전처리 알고리즘 설계와 딥러닝 기반의 통합 시스템)

  • Song, Hyun-hak;Lee, Hyo-chan;Lee, Sung-ju;Jeon, Ho-seok;Im, Tae-ho
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.117-126
    • /
    • 2020
  • A maritime object detection system is an intelligent assistance system to maritime autonomous surface ship(MASS). It detects automatically floating debris, which has a clash risk with objects in the surrounding water and used to be checked by a captain with a naked eye, at a similar level of accuracy to the human check method. It is used to detect objects around a ship. In the past, they were detected with information gathered from radars or sonar devices. With the development of artificial intelligence technology, intelligent CCTV installed in a ship are used to detect various types of floating debris on the course of sailing. If the speed of processing video data slows down due to the various requirements and complexity of MASS, however, there is no guarantee for safety as well as smooth service support. Trying to solve this issue, this study conducted research on the minimization of computation volumes for video data and the increased speed of data processing to detect maritime objects. Unlike previous studies that used the Hough transform algorithm to find the horizon and secure the areas of interest for the concerned objects, the present study proposed a new method of optimizing a binarization algorithm and finding areas whose locations were similar to actual objects in order to improve the speed. A maritime object detection system was materialized based on deep learning CNN to demonstrate the usefulness of the proposed method and assess the performance of the algorithm. The proposed algorithm performed at a speed that was 4 times faster than the old method while keeping the detection accuracy of the old method.

View-Invariant Body Pose Estimation based on Biased Manifold Learning (편향된 다양체 학습 기반 시점 변화에 강인한 인체 포즈 추정)

  • Hur, Dong-Cheol;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.11
    • /
    • pp.960-966
    • /
    • 2009
  • A manifold is used to represent a relationship between high-dimensional data samples in low-dimensional space. In human pose estimation, it is created in low-dimensional space for processing image and 3D body configuration data. Manifold learning is to build a manifold. But it is vulnerable to silhouette variations. Such silhouette variations are occurred due to view-change, person-change, distance-change, and noises. Representing silhouette variations in a single manifold is impossible. In this paper, we focus a silhouette variation problem occurred by view-change. In previous view invariant pose estimation methods based on manifold learning, there were two ways. One is modeling manifolds for all view points. The other is to extract view factors from mapping functions. But these methods do not support one by one mapping for silhouettes and corresponding body configurations because of unsupervised learning. Modeling manifold and extracting view factors are very complex. So we propose a method based on triple manifolds. These are view manifold, pose manifold, and body configuration manifold. In order to build manifolds, we employ biased manifold learning. After building manifolds, we learn mapping functions among spaces (2D image space, pose manifold space, view manifold space, body configuration manifold space, 3D body configuration space). In our experiments, we could estimate various body poses from 24 view points.

Transform domain Wyner-Ziv Coding based on the frequency-adaptive channel noise modeling (주파수 적응 채널 잡음 모델링에 기반한 변환영역 Wyner-Ziv 부호화 방법)

  • Kim, Byung-Hee;Ko, Bong-Hyuck;Jeon, Byeung-Woo
    • Journal of Broadcast Engineering
    • /
    • v.14 no.2
    • /
    • pp.144-153
    • /
    • 2009
  • Recently, as the necessity of a light-weighted video encoding technique has been rising for applications such as UCC(User Created Contents) or Multiview Video, Distributed Video Coding(DVC) where a decoder, not an encoder, performs the motion estimation/compensation taking most of computational complexity has been vigorously investigated. Wyner-Ziv coding reconstructs an image by eliminating the noise on side information which is decoder-side prediction of original image using channel code. Generally the side information of Wyner-Ziv coding is generated by using frame interpolation between key frames. The channel code such as Turbo code or LDPC code which shows a performance close to the Shannon's limit is employed. The noise model of Wyner-Ziv coding for channel decoding is called Virtual Channel Noise and is generally modeled by Laplacian or Gaussian distribution. In this paper, we propose a Wyner-Ziv coding method based on the frequency-adaptive channel noise modeling in transform domain. The experimental results with various sequences prove that the proposed method makes the channel noise model more accurate compared to the conventional scheme, resulting in improvement of the rate-distortion performance by up to 0.52dB.

A Study on the VLSI Design of Efficient Color Interpolation Technique Using Spatial Correlation for CCD/CMOS Image Sensor (화소 간 상관관계를 이용한 CCD/CMOS 이미지 센서용 색 보간 기법 및 VLSI 설계에 관한 연구)

  • Lee, Won-Jae;Lee, Seong-Joo;Kim, Jae-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.26-36
    • /
    • 2006
  • In this paper, we propose a cost-effective color filter may (CFA) demosaicing method for digital still cameras in which a single CCD or CMOS image sensor is used. Since a CFA is adopted, we must interpolate missing color values in the red, green and blue channels at each pixel location. While most state-of-the-art algorithms invest a great deal of computational effort in the enhancement of the reconstructed image to overcome the color artifacts, we focus on eliminating the color artifacts with low computational complexity. Using spatial correlation of the adjacent pixels, the edge-directional information of the neighbor pixels is used for determining the edge direction of the current pixel. We apply our method to the state-of-the-art algorithms which use edge-directed methods to interpolate the missing color channels. The experiment results show that the proposed method enhances the demosaiced image qualify from $0.09{\sim}0.47dB$ in PSNR depending on the basis algorithm by removing most of the color artifacts. The proposed method was implemented and verified successfully using verilog HDL and FPGA. It was synthesized to gate-level circuits using 0.25um CMOS standard cell library. The total logic gate count is 12K, and five line memories are used.

Bit Assignment for Wyner-Ziv Video Coding (Wyner-Ziv 비디오 부호화를 위한 비트배정)

  • Park, Jong-Bin;Jeon, Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.128-138
    • /
    • 2010
  • In this paper, we propose a new bit assignment scheme for Wyner-Ziv video coding. Distributed video coding (DVC) is a new video coding paradigm which enables greatly low complexity encoding because it does not have any motion prediction module at encoder. Therefore, it is very well suited for many applications such as video communication, video surveillance, extremely low power consumption video coding, and other portable applications. Theoretically, the Wyner-Ziv video coding is proved to achieve the same rate-distortion (RD) performance comparable to that of the joint video coding. However, its RD performance has much gap compared to MC-DCT-based video coding such as H.264/AVC. Moreover, Transform Domain Wyner-Ziv (TDWZ) video coding which is a kind of DVC with transform module has difficulty of exact bit assignment because the entire image is treated as a same message. In this paper, we propose a feasible bit assignment algorithm using adaptive quantization matrix selection for the TDWZ video coding. The proposed method can calculate suitable bit amount for each region using the local characteristics of image. Simulation results show that the proposed method can enhance coding performance.

Studies of Automatic Dental Cavity Detection System as an Auxiliary Tool for Diagnosis of Dental Caries in Digital X-ray Image (디지털 X-선 영상을 통한 치아우식증 진단 보조 시스템으로써 치아 와동 자동 검출 프로그램 연구)

  • Huh, Jangyong;Nam, Haewon;Kim, Juhae;Park, Jiman;Shin, Sukyoung;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.52-58
    • /
    • 2015
  • The automated dental cavity detection program for a new concept intra-oral dental x-ray imaging device, an auxiliary diagnosis system, which is able to assist a dentist to identify dental caries in an early stage and to make an accurate diagnosis, was to be developed. The primary theory of the automatic dental cavity detection program is divided into two algorithms; one is an image segmentation skill to discriminate between a dental cavity and a normal tooth and the other is a computational method to analyze feature of an tooth image and take an advantage of it for detection of dental cavities. In the present study, it is, first, evaluated how accurately the DRLSE (Direct Regularized Level Set Evolution) method extracts demarcation surrounding the dental cavity. In order to evaluate the ability of the developed algorithm to automatically detect dental cavities, 7 tooth phantoms from incisor to molar were fabricated which contained a various form of cavities. Then, dental cavities in the tooth phantom images were analyzed with the developed algorithm. Except for two cavities whose contours were identified partially, the contours of 12 cavities were correctly discriminated by the automated dental caries detection program, which, consequently, proved the practical feasibility of the automatic dental lesion detection algorithm. However, an efficient and enhanced algorithm is required for its application to the actual dental diagnosis since shapes or conditions of the dental caries are different between individuals and complicated. In the future, the automatic dental cavity detection system will be improved adding pattern recognition or machine learning based algorithm which can deal with information of tooth status.

Hardware Design of SURF-based Feature extraction and description for Object Tracking (객체 추적을 위한 SURF 기반 특이점 추출 및 서술자 생성의 하드웨어 설계)

  • Do, Yong-Sig;Jeong, Yong-Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.83-93
    • /
    • 2013
  • Recently, the SURF algorithm, which is conjugated for object tracking system as part of many computer vision applications, is a well-known scale- and rotation-invariant feature detection algorithm. The SURF, due to its high computational complexity, there is essential to develop a hardware accelerator in order to be used on an IP in embedded environment. However, the SURF requires a huge local memory, causing many problems that increase the chip size and decrease the value of IP in ASIC and SoC system design. In this paper, we proposed a way to design a SURF algorithm in hardware with greatly reduced local memory by partitioning the algorithms into several Sub-IPs using external memory and a DMA. To justify validity of the proposed method, we developed an example of simplified object tracking algorithm. The execution speed of the hardware IP was about 31 frame/sec, the logic size was about 74Kgate in the 30nm technology with 81Kbytes local memory in the embedded system platform consisting of ARM Cortex-M0 processor, AMBA bus(AHB-lite and APB), DMA and a SDRAM controller. Hence, it can be used to the hardware IP of SoC Chip. If the image processing algorithm akin to SURF is applied to the method proposed in this paper, it is expected that it can implement an efficient hardware design for target application.

Registration Technique of Partial 3D Point Clouds Acquired from a Multi-view Camera for Indoor Scene Reconstruction (실내환경 복원을 위한 다시점 카메라로 획득된 부분적 3차원 점군의 정합 기법)

  • Kim Sehwan;Woo Woontack
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.3 s.303
    • /
    • pp.39-52
    • /
    • 2005
  • In this paper, a registration method is presented to register partial 3D point clouds, acquired from a multi-view camera, for 3D reconstruction of an indoor environment. In general, conventional registration methods require a high computational complexity and much time for registration. Moreover, these methods are not robust for 3D point cloud which has comparatively low precision. To overcome these drawbacks, a projection-based registration method is proposed. First, depth images are refined based on temporal property by excluding 3D points with a large variation, and spatial property by filling up holes referring neighboring 3D points. Second, 3D point clouds acquired from two views are projected onto the same image plane, and two-step integer mapping is applied to enable modified KLT (Kanade-Lucas-Tomasi) to find correspondences. Then, fine registration is carried out through minimizing distance errors based on adaptive search range. Finally, we calculate a final color referring colors of corresponding points and reconstruct an indoor environment by applying the above procedure to consecutive scenes. The proposed method not only reduces computational complexity by searching for correspondences on a 2D image plane, but also enables effective registration even for 3D points which have low precision. Furthermore, only a few color and depth images are needed to reconstruct an indoor environment.