• Title/Summary/Keyword: 복소수 변위

Search Result 14, Processing Time 0.019 seconds

Analytical Investigation on Elastic Behaviors of Isotropic Annular Sector Plates Subjected to Uniform Loading (등분포하중을 받는 등방성 환형 섹터판의 탄성 거동에 대한 해석적 연구)

  • Kim, Kyung-Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.241-251
    • /
    • 2010
  • This paper presents the development of a new analytical solution to the governing differential equation for isotropic annular sector plates subjected to uniform loading in a three-dimensional polar coordinate system. The 4th order governing partial differential equation (PDE) was converted to an ordinary differential equation (ODE) by assuming the Levy-type series solution form and the subsequent mathematical operations. Finally, a series-type solution was assembled with homogeneous and nonhomogeneous solution parts after operating real values and complex conjugates derived from the characteristic equation. To demonstrate the convergence rate and the accuracy of the featured method, several examples with various sector angles were selected and solved. The deflections and internal moments in the example annular sector plates that were obtained from the proposed solution were compared with those obtained from other analytical studies and numerical analyses using the finite element analysis package program, ABAQUS. Very good agreement with the results of other analytical and numerical methodologies was shown.

A Study on Elastic Guided Wave Modal Characteristics in Multi-Layered Structures (적층내 탄성 유도초음파의 모드 특성에 관한 연구)

  • Cho, Youn-Ho;Lee, Chong-Myoung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.211-216
    • /
    • 2008
  • In this study, we have developed a program which can calculate phase and group velocities, attenuation and wave structures of each mode in multi-layered plates. The wave structures of each mode are obtained, varying material properties and number of layers. The key in the success of guided wave NDE is how to optimize the mode selection scheme by minimizing energy loss when a structure is in contact with liquid. In this study, the normalized out-of-plane displacements at the surface of a free plate are used to predict the variation of modal attenuation and verily the correlation between attenuation and wave structure. It turns out that the guided wave attenuation can be efficiently obtain from the out-of-plane displacement variation of a free wave guide alleviating such mathematical difficulties in extracting complex roots for the eigenvalue problem of a liquid loaded wave guide. Through this study, the concert to optimize guided wave mode selection is accomplished to enhance sensitivity and efficiency in nondestructive evaluation for multi-layered structures.

Antiplane Problem of Interfacial Cracks Bonded with Transversely Isotropic Piezoelectric Media (횡등방 압전재료의 면외 계면균열문제)

  • Choi, Sung-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.665-672
    • /
    • 2012
  • Interfacial cracks bonded with dissimilar transversely isotropic piezoelectric media that are subjected to combined anti-plane mechanical and in-plane electrical loading are analyzed. The problem is formulated using complex function theory, from which the Hilbert problem is derived. By solving the Hilbert problem, the general form solution is obtained. Using this solution, closed-form solutions for one or two finite cracks as well as a semi-infinite crack are obtained, for the problem in which one concentrated mechanical and electrical load is imposed on the crack surface. This solution could be used as a Green's function to generate solutions to other problems with the same geometry but different loading conditions.

Stress Distribution in the Vicinity of a Crack Tip in a Plate under Tensile Load Using Displacement Data of Finite Element Method (유한요소 변위값을 이용한 인장하중 판재 균열선단 주위의 응력분포 해석)

  • Baek, Tae-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.84-91
    • /
    • 2008
  • Due to the complexity of the engineering problems, it is difficult to obtain directly the stress field around the crack tip by theoretical derivation. In the paper, the hybrid method is employed to calculate full-field stress around the crack tip in uni-axially leaded finite width tensile plate, using the displacement data of given points calculated by finite element method as input data. The method uses complex variable formulations involving conformal mappings and analytical continuity. In order to accurately compare calculated fringes with experimental ones, both actual and reconstructed photoelastic fringe patterns are two times multiplied and sharpened by digital image processing. Reconstructed fringes by hybrid method are quite comparable to actual fringes. The experimental results indicate that Mode I stress intensity factor analyzed by the hybrid method are accurate within a few percent compared with ones obtained by empirical equation and finite element analysis.