• Title/Summary/Keyword: 복사보정

Search Result 131, Processing Time 0.038 seconds

Experimentation and Evaluation of Energy Corrected Snake(ECS) Algorithm for Detection and Tracking the Moving Object (이동물체 탐지 및 추적을 위한 에너지 보정 스네이크(ECS) 알고리즘의 실험 및 평가)

  • Yang, Seong-Sil;Yoon, Hee-Byung
    • The KIPS Transactions:PartB
    • /
    • v.16B no.4
    • /
    • pp.289-298
    • /
    • 2009
  • Active Contour Model, that is, Snake algorithm is effective for detection and tracking the objects. However, this algorithm has some drawbacks; numerous parameters must be designed(weighting factors, iteration steps, etc.), a reasonable initialization must be available and moreover suffers from numerical instability. Therefore we propose a novel Energy Corrected Snake(ECS) algorithm which improved on external energy of Snake algorithm for detection and tracking the moving object more effectively. The proposed algorithm uses the difference image, getting when the object is moving. It copies four direction images from the difference image and performs the accumulating compute to erasing image noise, so that it gets external energy steadily. Then external energy united with contour that is computed by internal energy. Consequently we can detect and track the moving object more speedily and easily. To show the effectiveness of the proposed algorithm, we experiment on 3 situations. The experimental results showed that the proposed algorithm outperformed by 6$\sim$9% of detection rate and 6$\sim$11% of tracker detection rate compared with the Snake algorithm.

Application of Atmospheric Correction to KOMPSAT for Agriculture Monitoring (농경지 관측을 위한 KOMPSAT 대기보정 적용 및 평가)

  • Ahn, Ho-yong;Ryu, Jae-Hyun;Na, Sang-il;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1951-1963
    • /
    • 2021
  • Remote sensing data using earth observation satellites in agricultural environment monitoring has many advantages over other methods in terms of time, space, and efficiency. Since the sensor mounted on the satellite measures the energy that sunlight is reflected back to the ground, noise is generated in the process of being scattered, absorbed, and reflected by the Earth's atmosphere. Therefore, in order to accurately measure the energy reflected on the ground (radiance), atmospheric correction, which must remove noise caused by the effect of the atmosphere, should be preceded. In this study, atmospheric correction sensitivity analysis, inter-satellite cross-analysis, and comparative analysis with ground observation data were performed to evaluate the application of KOMPSAT-3 satellite's atmospheric correction for agricultural application. As a result, in all cases, the surface reflectance after atmospheric correction showed a higher mutual agreement than the TOA reflectance before atmospheric correction, and it is possible to produce the time series vegetation index of the same standard. However, additional research is needed for quantitative analysis of the sensitivity of atmospheric input parameters and the tilt angle.

A Strategy for Environmental Improvement and Internationalization of the IEODO Ocean Research Station's Radiation Observatory (이어도 종합해양과학기지의 복사관측소 환경 개선 및 국제화 추진 전략)

  • LEE, SANG-HO;Zo, Il-SUNG;LEE, KYU-TAE;KIM, BU-YO;JUNG, HYUN-SEOK;RIM, SE-HUN;BYUN, DO-SEONG;LEE, JU-YEONG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.3
    • /
    • pp.118-134
    • /
    • 2017
  • The radiation observation data will be used importantly in research field such as climatology, weather, architecture, agro-livestock and marine science. The Ieodo Ocean Research Station (IORS) is regarded as an ideal observatory because its location can minimize the solar radiation reflection from the surrounding background and also the data produced here can serve as a reference data for radiation observation. This station has the potential to emerge as a significant observatory and join a global radiation observation group such as the Baseline Surface Radiation Network (BSRN), if the surrounding of observatory is improved and be equipped with the essential radiation measuring instruments (pyaranometer and pyrheliometer). IORS has observed the solar radiation using a pyranometer since November 2004 and the data from January 1, 2005 to December 31, 2015 were analyzed in this study. During the period of this study, the daily mean solar radiation observed from IORS decreased to $-3.80W/m^2/year$ due to the variation of the sensor response in addition to the natural environment. Since the yellow sand and fine dust from China are of great interest to scientists around the world, it is necessary to establish a basis of global joint response through the radiation data obtained at the Ieodo as well as at Sinan Gageocho and Ongjin Socheongcho Ocean Research Station. So it is an urgent need to improve the observatory surrounding and the accuracy of the observed data.

Sensitivity Analysis of Surface Reflectance Retrieved from 6SV LUT for Each Channel of KOMPSAT-3/3A (KOMPSAT-3/3A 채널별 6SV 조견표의 지표반사도 민감도 분석)

  • Jung, Daeseong;Jin, Donghyun;Seong, Noh-Hun;Lee, Kyeong-Sang;Seo, Minji;Choi, Sungwon;Sim, Suyoung;Han, Kyung-Soo;Kim, Bo-Ram
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.785-791
    • /
    • 2020
  • The radiance measured from satellite has noise due to atmospheric effect. Atmospheric correction is the process of calculating surface reflectance by removing atmospheric effect and surface reflectance is calculated by the Radiative Transfer Model (RTM)-based Look-Up Table (LUT). In general, studies using a LUT make LUT for each channel with the same atmospheric and geometric conditions. However, atmospheric effect of atmospheric factors do not react sensitively in the same channel. In this study, the LUT for each channel of Korea Multi-Purpose SATellite (KOMPSAT)-3/3A was made under the same atmospheric·geometric conditions. And, the accuracy of the LUT was verified by using the simulated Top of Atmosphere radiation and surface reflectance in the RTM. As a result, the relative error of the surface reflectance in the blue channel that sensitive to the aerosol optical depth was 81.14% at the maximum, and 42.67% in the NIR (Near Infrared) channel.

Examining Influences of Asian dust on SST Retrievals over the East Asian Sea Waters Using NOAA AVHRR Data (NOAA AVHRR 자료를 이용한 해수면온도 산출에 황사가 미치는 영향)

  • Chun, Hyoung-Wook;Sohn, Byung-Ju
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.1
    • /
    • pp.45-59
    • /
    • 2009
  • This research presents the effect of Asian dust on the derived sea surface temperature (SST) from measurements of the Advanced Very High Resolution Radiometer (AVHRR) instrument flown onboard NOAA polar orbiting satellites. To analyze the effect, A VHRR infrared brightness temperature (TB) is estimated from simulated radiance calculated from radiative transfer model on various atmospheric conditions. Vertical profiles of temperature, pressure, and humidity from radiosonde observation are used to build up the East Asian atmospheric conditions in spring. Aerosol optical thickness (AOT) and size distribution are derived from skyradiation measurements to be used as inputs to the radiative transfer model. The simulation results show that single channel TB at window region is depressed under the Asian dust condition. The magnitude of depression is about 2K at nadir under moderate aerosol loading, but the magnitude reaches up to 4K at slant path. The dual channel difference (DCD) in spilt window region is also reduced under the Asian dust condition, but the reduction of DCD is much smaller than that shown in single channel TB simulation. Owing to the depression of TB, SST has cold bias. In addition, the effect of AOT on SST is amplified at large satellite zenith angle (SZA), resulting in high variance in derived SSTs. The SST depression due to the presence of Asian dust can be expressed as a linear function of AOT and SZA. On the basis of this relationship, the effect of Asian dust on the SST retrieval from the conventional daytime multi-channel SST algorithm can be derived as a function of AOT and SZA.

Introduction of GOCI-II Atmospheric Correction Algorithm and Its Initial Validations (GOCI-II 대기보정 알고리즘의 소개 및 초기단계 검증 결과)

  • Ahn, Jae-Hyun;Kim, Kwang-Seok;Lee, Eun-Kyung;Bae, Su-Jung;Lee, Kyeong-Sang;Moon, Jeong-Eon;Han, Tai-Hyun;Park, Young-Je
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1259-1268
    • /
    • 2021
  • The 2nd Geostationary Ocean Color Imager (GOCI-II) is the successor to the Geostationary Ocean Color Imager (GOCI), which employs one near-ultraviolet wavelength (380 nm) and eight visible wavelengths(412, 443, 490, 510, 555, 620, 660, 680 nm) and three near-infrared wavelengths(709, 745, 865 nm) to observe the marine environment in Northeast Asia, including the Korean Peninsula. However, the multispectral radiance image observed at satellite altitude includes both the water-leaving radiance and the atmospheric path radiance. Therefore, the atmospheric correction process to estimate the water-leaving radiance without the path radiance is essential for analyzing the ocean environment. This manuscript describes the GOCI-II standard atmospheric correction algorithm and its initial phase validation. The GOCI-II atmospheric correction method is theoretically based on the previous GOCI atmospheric correction, then partially improved for turbid water with the GOCI-II's two additional bands, i.e., 620 and 709 nm. The match-up showed an acceptable result, with the mean absolute percentage errors are fall within 5% in blue bands. It is supposed that part of the deviation over case-II waters arose from a lack of near-infrared vicarious calibration. We expect the GOCI-II atmospheric correction algorithm to be improved and updated regularly to the GOCI-II data processing system through continuous calibration and validation activities.

다목적 실용위성 1호 EOC의 Dark Calibration Data 분석

  • 강치호;전갑호;전정남;최해진
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.101-101
    • /
    • 2003
  • 다목적 실용위성 1호에 탑재된 EOC(Electro-Optical Camera)는 2,000년부터 현재까지 한반도 인근 및 세계의 주요 육지 지역을 관측하고 있다. DOC는 크게 광학부(Sensor Assembly)와 전자부(Electronics Assembly)로 구성되어 있으며, 지상으로부터 입사하는 광 정보를 디지털 신호로 재구성하여 PDTS(Payload Data Transmission System)을 통해 지상으로 전송한다. EOC 광학부는 2,592개의 CCD(Charge-Coupled Device) 센서들로 구성된 선형 시스템이며, push-broom 주사 방식으로 구동된다. 한편, EOC의 임무 전, 후로 Aperture Cover Mechanism에 의해 EOC의 덮개를 덮은 상태로 짧은 시간동안 촬영을 수행, 획득된 영상 역시 지상으로 전송한다. 이러한 영상들은 EOC 영상에 포함되어 있는 암전류(Dark Current)에 대한 간접적인 정보를 제공하며, Dark Calibration Data로 정의된다. Dark Calibration Data는 지상에서 수신된 후, EOC 영상에 대한 복사 보정에 이용된다. 본 연구에서는 EOC Dark Calibration Data에 대한 분석을 통해, EOC 영상 내의 잡음 성분을 분석한다.

  • PDF

Retrieval and analysis of LST from MTSAT-1R (MTSAT-1R 자료를 이용한 지표면온도 산출 및 분석)

  • Kwak, Seo-Youn;Suh, Myoung-Seok;Kang, Jeon-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.271-276
    • /
    • 2007
  • 지표면의 파장별 방출율을 알고 있다는 가정하에 대기의 흡수효과가 상이한 두 파장역을 이용하여 대기효과를 보정해주는 일반적인 분리대기창(Generalized Split-Window) 방법으로 MTSAT-1R 자료로부터 지표면 온도(LST) 산출 알고리즘을 개발하였다. 지표면온도 산출 회귀식은 대기복사전달모델 MODTRAN4.0으로 위성으로부터 LST를 산출하는데 영향을 주는 여러 가지 요소(주/야간,수증기, 방출율,위성관측각 등)들을 고려하여 모의된 자료로부터 도출하였다. 개발한 LST 산출알고리즘의 수준을 분석하기 위해 MSGl SEVIRI 센서에 적합하도록 개 발된 Sobrino and Romaguera(2004)의 알고리즘과 GMS-5 VISSR 센서에 적합하도록 개발된 Prata and Cechet(1999)의 알고리즘과 비교하였다. 3 알고리즘을 MTSAT-1R 자료에 적용하여 LST를 산출한 결과 LST의 공간분포는 정성적으로 서로 유사하게 나타났으나,정량적으로는 지리적 위치,계절 및 주간/야간에 따라서 LST가 다르게 나타났다.

  • PDF

NDVI signature for mountain forest in accordance with topographic effects using QuickBird multi-spectral data (QuickBird 다중분광자료를 이용한 산림 지형효과의 NDVI 특성)

  • Hong, Min-Gee;Park, Soon-Chul;Kim, Gwang-Deuk;Yoon, Chang-Yeol;Kim, Choen
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.06a
    • /
    • pp.117-118
    • /
    • 2010
  • 위성 주사 및 촬영자료는 지표면의 반사광을 다중분광 형태로 주사하여 기록된다. 그리나 각 밴드에 기록된 지표복사체의 반사치는 피복체의 분광특성만을 나타내기 보다는 태양고도 및 방위, 그리고 지형 등에 따른 방향성 영향이 포함되기 때문에 산림의 관리 및 이용을 위한 기초자료로 식생지수를 추정할 때에 오차의 범위를 넘어 오류가 발생한다. 따라서 동일 방향성 조건의 수종에 따른 고유 정규식생지수(Normalized Difference Vegetation Index, 이하 NDVI) 값을 구하기 위해서는 지형효과에 대한 보정이 필요하다. 본 연구에서는 QuickBird 다중분광(MS)자료 기반의 NDVI값을 사면향별로 분석하여 산림 NDVI의 방향성을 증명하였다.

  • PDF

Noise Equivalent Differential Temperature of Passive FTIR Sensor System (수동형 퓨리에변환 적외선 분광기의 잡음등가온도지수)

  • Kang, Young-Il;Park, Byeong-Hwang;Choi, Myung-Jin;Hong, Dea-Sik;Choi, Soo;Kim, Dong-Hwan;Park, Do-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.161-166
    • /
    • 2011
  • The passive open-path Fourier-Transform-Infrared system was implemented for the toxic gas monitoring. Noise Equivalent Differential Temperature(NEDT) was investigated as a system performance evaluation figure and analyzed numerically with the designed parameters. Calculated NEDT was compared with the experimental value in the wavelength region of $700{\sim}1400cm^{-1}^$. The minimum detectable gas concentration was estimated from the obtained NEDT at the absorption wavelength of $SF_6$.