DOI QR코드

DOI QR Code

A Strategy for Environmental Improvement and Internationalization of the IEODO Ocean Research Station's Radiation Observatory

이어도 종합해양과학기지의 복사관측소 환경 개선 및 국제화 추진 전략

  • LEE, SANG-HO (Department of Atmospheric and Environmental Sciences, Gangneung-Wonju National University) ;
  • Zo, Il-SUNG (Research Institute for Radiation-Satellite, Gangneung-Wonju National University) ;
  • LEE, KYU-TAE (Department of Atmospheric and Environmental Sciences, Gangneung-Wonju National University) ;
  • KIM, BU-YO (Department of Atmospheric and Environmental Sciences, Gangneung-Wonju National University) ;
  • JUNG, HYUN-SEOK (Department of Atmospheric and Environmental Sciences, Gangneung-Wonju National University) ;
  • RIM, SE-HUN (Department of Atmospheric and Environmental Sciences, Gangneung-Wonju National University) ;
  • BYUN, DO-SEONG (Ocean Research Division, Korea Hydrographic and Oceangraphic Administration) ;
  • LEE, JU-YEONG (Ocean Research Division, Korea Hydrographic and Oceangraphic Administration)
  • 이상호 (강릉원주대학교 대기환경과학과) ;
  • 조일성 (강릉원주대학교 복사-위성 연구소) ;
  • 이규태 (강릉원주대학교 대기환경과학과) ;
  • 김부요 (강릉원주대학교 대기환경과학과) ;
  • 정현석 (강릉원주대학교 대기환경과학과) ;
  • 임세훈 (강릉원주대학교 대기환경과학과) ;
  • 변도성 (국립해양조사원 해양과학조사연구실) ;
  • 이주영 (국립해양조사원 해양과학조사연구실)
  • Received : 2017.05.15
  • Accepted : 2017.08.07
  • Published : 2017.08.31

Abstract

The radiation observation data will be used importantly in research field such as climatology, weather, architecture, agro-livestock and marine science. The Ieodo Ocean Research Station (IORS) is regarded as an ideal observatory because its location can minimize the solar radiation reflection from the surrounding background and also the data produced here can serve as a reference data for radiation observation. This station has the potential to emerge as a significant observatory and join a global radiation observation group such as the Baseline Surface Radiation Network (BSRN), if the surrounding of observatory is improved and be equipped with the essential radiation measuring instruments (pyaranometer and pyrheliometer). IORS has observed the solar radiation using a pyranometer since November 2004 and the data from January 1, 2005 to December 31, 2015 were analyzed in this study. During the period of this study, the daily mean solar radiation observed from IORS decreased to $-3.80W/m^2/year$ due to the variation of the sensor response in addition to the natural environment. Since the yellow sand and fine dust from China are of great interest to scientists around the world, it is necessary to establish a basis of global joint response through the radiation data obtained at the Ieodo as well as at Sinan Gageocho and Ongjin Socheongcho Ocean Research Station. So it is an urgent need to improve the observatory surrounding and the accuracy of the observed data.

정확한 복사 관측자료는 기후 및 날씨뿐만 아니라 해양과 건축 및 농 축산 분야 등 중요하게 활용된다. 특히 이어도와 같은 종합 해양과학기지는 주변 환경에 의한 복사 반사 효과를 최소화할 수 있기 때문에 이상적인 관측소로 평가되며 여기서 생산되는 자료는 복사관측의 기준 자료가 될 수 있다. 또한 BSRN (Baseline Surface Radiation Network) 등 세계복사관측그룹 가입을 위한 필수 장비들(전천과 직달 및 산란 일사계 등)을 갖추고 관측소 환경을 개선할 경우 전 세계적인 중요 관측소로 부각될 수 있는 여건을 갖추고 있다. 이어도 종합해양과학기지는 2004년 11월부터 일사계 관측을 수행해 왔고 이 연구에서는 2005년 1월 1일부터 2015년 12월 31일까지의 자료를 분석하였다. 이 연구 기간에 이어도의 일평균 일사량은 $-3.80W/m^2/year$로 감소하였고 그 이유는 자연적 원인 이외에 관측장비의 센서 반응도 감소 효과가 포함되어 있기 때문이다. 즉 이어도 종합해양과학기지의 경우 정밀한 복사 관측 자료를 생산하기 위해서는 관측소 환경 개선뿐만 아니라 관측장비 및 자료 보정이 요구된다. 그리고 한반도의 대기 청정도와 국민 건강을 크게 위협하고 있는 중국발 황사와 미세 먼지는 전 세계 과학자들의 중요 관심 대상이기 때문에 이어도뿐만 아니라 신안 가거초 및 옹진 소청초 종합해양과학기지 복사 관측자료를 통한 공동 대응 근거 마련이 필요하며 그에 따라 이들 복사관측소 환경 및 장비 개선 그리고 관측자료 정확성 향상 계획 수립이 시급하다.

Keywords

References

  1. Bryan, F., D. Fred, A. Robert, S. Greg, M. Jay and R. Dave, 2016. Status and Operations of the Chesapeake Light (CLH). 14 th BSRN Scientific Review and Workshop-Canberra, Australia 26-29 April 2016.
  2. Byun, D.-S. and Y.-K. Cho, 2006. Estimation of the PAR irradiance ratio and its variability under clear-sky conditions at Ieodo in the East China Sea. Ocean Science Journal, 41(4): 235-244. https://doi.org/10.1007/BF03020627
  3. Chou, M.-D. and M.J. Suarez, 1999. A solar radiation parameterization for atmospheric studies. NASA Tech. Memo, 104606: 40.
  4. Garand, L., D. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde, R. Engelen and M. Hollingshead, 2001. Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels. Journal of Geophysical Research: Atmospheres, 106(D20): 24017-24031. https://doi.org/10.1029/2000JD000184
  5. Hatzianastassiou, N., C. Matsoukas, A. Fotiadi, K. Pavlakis, E. Drakakis, D. Hatzidimitriou and I. Vardavas, 2005. Global distribution of Earth's surface shortwave radiation budget. Atmospheric Chemistry and Physics, 5(10): 2847-2867. https://doi.org/10.5194/acp-5-2847-2005
  6. Iqbal, M., 1983. An introduction to solar radiation. Academic press, NewYork, 390 pp.
  7. Jee, J.-B., Y.-D. Kim, W.-H. Lee and K.-T. Lee, 2010. Temporal and Spatial Spatial Distributions of Solar Radiation with Surface Pyranometer Data in South Korea. Korean Earth Science Society, 31(7): 720-737. https://doi.org/10.5467/JKESS.2010.31.7.720
  8. KHOA, 2016. A Strategy for Environmental Improvement and Internationalization of the Ieodo Ocean Research Station's Radiation Observatory, 122 pp.
  9. Kim, B.-C. and B.-K. Choi, 2006. Variation of underwater ambient noise observed at IORS station as a pilot study. Ocean Science Journal, 41(3): 175-179. https://doi.org/10.1007/BF03022422
  10. Kim, Y.-H., I.-K. Min and C.-M. Park, 2007. Report of Applying the Quality Program on the Real-time Observation data of Ieodo Ocean Research Station. Society of Ieodo Research, 138-148.
  11. KMA, 2007. Study on the Design and Operation of Network for Solar Radiation Measurement in South Korea, 110 pp.
  12. Lamquin, N., C. Mazeran, D. Doxaran, J.-H. Ryu and Y.-J. Park, 2012. Assessment of GOCI radiometric products using MERIS, MODIS and field measurements. Ocean Science Journal, 47(3): 287-311. https://doi.org/10.1007/s12601-012-0029-z
  13. Liang, S., K. Wang, X. Zhang and M. Wild, 2010. Review on estimation of land surface radiation and energy budgets from ground measurement, remote sensing and model simulations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(3): 225-240. https://doi.org/10.1109/JSTARS.2010.2048556
  14. Lian-Gang, L., Y. Fei, D. Xinyuan, G. Jingsong, W. Huiwu and W. Chuanjie, 2008. Direct observation of radiative flux in the southern Yellow Sea. Ocean Science Journal, 43(2): 115-126. https://doi.org/10.1007/BF03020588
  15. Long, C.N. and E.G. Dutton, 2010. BSRN Global Network recommended QC tests, V2. x.
  16. NASA COVE, 2012. Chesapeake Light House National Aeronautics and Space Administration Clouds and the Earth Radiant Energy System Ocean Validation Experiment. http://cove.larc.nasa.gov/ Accessed Oct 2012.
  17. Ohmura, A., E.G. Dutton, B. Forgan and C. Frohlich, 1998. Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate research. Bulletin of the American Meteorological Society, 79(10): 2115. https://doi.org/10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2
  18. Ohtake, H., J.G. da Silva Fonseca, T. Takashima, T. Oozeki, K.-i. Shimose and Y. Yamada, 2015. Regional and seasonal characteristics of global horizontal irradiance forecasts obtained from the Japan Meteorological Agency mesoscale model. Solar Energy, 116: 83-99. https://doi.org/10.1016/j.solener.2015.03.020
  19. Osamu, L., 2010. Measurement of Radiation in Japan Meteorological Agency. Davos-Switzerland, October 2010.
  20. Park, S.-H., S.-M. Jang, D.-I. Lee, W.-S. Jung, J.-H. Jeong, S.-A. Jung, C.-H. Jung, S.-I. Kim and S.-E. Kim, 2012. The Variation of Aerosol Number Concentrations in Relation with 3D Wind Components in the Ieodo Ocean Research Station. Atmosphere. Korean Meteorological Society, 22: 97-107. https://doi.org/10.14191/Atmos.2012.22.1.097
  21. Pinker, R., R. Frouin and Z. Li, 1995. A review of satellite methods to derive surface shortwave irradiance. Remote Sensing of Environment, 51(1): 108-124. https://doi.org/10.1016/0034-4257(94)00069-Y
  22. Rutledge, C.K., G.L. Schuster, T.P. Charlock, F.M. Denn, W.L. Smith Jr, B.E. Fabbri, J.J. Madigan Jr and R.J. Knapp, 2006. Offshore radiation observations for climate research at the CERES ocean validation experiment: A new "Laboratory" for retrieval algorithm testing. Bulletin of the American Meteorological Society, 87(9): 1211-1222. https://doi.org/10.1175/BAMS-87-9-1211
  23. Schmithusen, H., R. Sieger and G. Konig-Langlo, 2012. BSRN Toolbox V2. 0-a tool to create quality checked output files from BSRN datasets and station-to-archive files. PANGAEA.
  24. Sohn, B.-J., 1996. The Impact of Clouds on the Surface Longwave Radiation Budget. Asia-Pacific Journal of Atmospheric Sciences, 32(2): 229-242.
  25. Stocker, T., D. Qin, G. Plattner, M. Tignor, S. Allen, J. Boschung, A. Nauels, Y. Xia, B. Bex and B. Midgley, 2013. IPCC, 2013: climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change.
  26. WRMC BSRN, 1998. Minamitorishima Island. World Radiation Monitoring Center Baseline Surface Radiation Network. http://bsrn.awi.de/ Accessed Oct 1998.
  27. Zhang, T., P.W. Stackhouse, S.K. Gupta, S.J. Cox and J.C. Mikovitz, 2015. The validation of the GEWEX SRB surface longwave flux data products using BSRN measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 150: 134-147. https://doi.org/10.1016/j.jqsrt.2014.07.013
  28. Zhang, T., P.W. Stackhouse, S.K. Gupta, S.J. Cox, J.C. Mikovitz and L.M. Hinkelman, 2013. The validation of the GEWEX SRB surface shortwave flux data products using BSRN measurements: A systematic quality control, production and application approach. Journal of Quantitative Spectroscopy and Radiative Transfer, 122: 127-140. https://doi.org/10.1016/j.jqsrt.2012.10.004
  29. Zo, I.-S., J.-B. Jee and K.-T. Lee, 2014. Development of GWNU (Gangneung-Wonju National University) one-layer transfer model for calculation of solar radiation distribution of the Korean peninsula. Asia-Pacific Journal of Atmospheric Sciences, 50(1): 575-584. https://doi.org/10.1007/s13143-014-0047-0
  30. Zo, I.-S., J.-B. Jee, K.-T. Lee and B.-Y. Kim, 2016. Radiometer measurement intercomparison using absolute cavity radiometer in regional radiometer center at Tsukuba, Japan. New and Renewable Energy, 12(4): 5-13
  31. Zo, I.-S., J.-B. Jee, K.-T. Lee and B.-Y. Kim, 2016. Analysis of solar radiation on the surface estimated from GWNU solar radiation model with temporal resolution of satellite cloud fraction. Asia-Pacific Journal of Atmospheric Sciences, 52(4): 405-412. https://doi.org/10.1007/s13143-016-0024-x
  32. Zo, I.-S., J.-B. Jee, W.-H. Lee, K.-T. Lee and Y.-J. Choi, 2010. Distribution of Surface Solar Radiation by Radiative Model in South Korea. Climate Change Research, 1(2): 147-161.