• Title/Summary/Keyword: 보-기둥접합부

Search Result 426, Processing Time 0.025 seconds

Suggestion on Strength Formula of Square Hollow Section Tubluar Column-to-BeamPinned Connections (각형강관 기둥-보 핀접합부의 내력식 제안)

  • Choi, Sung Mo;Lee, Seong Hui;Lee, Kwang Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.525-534
    • /
    • 2006
  • Column-to-beam pinned connections can cause local moment to the web of a steel tube due to the distance of eccentricity between the row of bolts and the column flange, which possibility deteriorates the load capacity of column. In this study, a square hollow section tubular used finite element analysis of a square hollow section tubular column was carried out, and the column width and thickness, existence and non-existence of internal reinforcement, and existence and non-existence of compressive force were taken as variables to examine the load capacity deterioration of a square column caused by moment. To guarantee the reliability of the finite element results, some specimens were fabricated and tested. The yield line method was applied to suggest the strength formulas of the square tubular column to the beam pinned connections. Based on the study results, the column strength the moment of the square hollow section tubular column to the beam pined connections improved with the increase in the w to strength limitations, a no-reinforcement type of square hollow section tubular column was proposed, and if the limitation values were not satisfied, the reinforcement of the internal column was made mandatory. Therefore, the horizontal -reinforcement type considered the strength increase, and the fabrication of the square hollow section tubular column was ar column that considered its load capacity with the moment for the no-reinforcement and the horizontal-reinforcement types.

Structural Performance of Flexural Dominant Reinforced Concrete Beams strengthened in Beam-Column Joint with SHCC (변형경화형 시멘트 복합체(SHCC)로 보-기둥 접합부 단면이 증설된 휨항복형 철근콘크리트 보의 구조성능)

  • Song, Seon-Hwa;Jang, Gwang-Soo;Kim, Yun-Su;Kim, Sun-Woo;Kim, Yong-Cheol;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.53-56
    • /
    • 2008
  • Reinforced concrete rahmen structures has been required ductility as well as strength of beam-column joint in seismically hazard area. Some investigations have been presented for retrofitting and/or strengthening structural elements in structure. Strain-hardening cementitious composite(SHCC) has been expected excellent reinforcement performance in beam-column joint area. The properties of reinforcing fiber, as tensile strength, aspect ratio and elastic moudulus, have great effect on the fracture behavior of SHCC. The purpose of this experimental study is to evaluate structural performance of exterior reinforced concrete beam-column joint strengthened with SHCC under cyclic loading.

  • PDF

Analytical Study on Relationship Between Moment Transfer Efficiency of a Beam Web and Strain Concentration at Steel Moment Connections (철골 모멘트 접합부에서 웨브의 모멘트 전달효율과 변형도 집중과의 관계에 관한 해석적 연구)

  • Kim, Young Ju;Oh, Sang Hoon;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.695-703
    • /
    • 2004
  • In this paper, the results of monotonic loading analysis with four steel models and one composite model were shown. The effect that moment transfer efficiency of a web and strain concentration at a steel beam-to-column connections was investigated. Analysis results showed that the moment transfer efficiency of the analytical model with box-column was poor when comparing to model with H-column due to out-of-plane deformation of the box-column flange. The presence of scallop, thin plate of box column and floor slabs was also a reason of the decrease of moment transfer efficiency, which would result in a potential fracture of the steel beam-to-column connections. Analytical results were compared with experimental results based on previous test. As a result, the deformation capacity of connections with a box-column or a floor slab decreased due to the poor moment transfer efficiency and the strain concentration of beam flange in the vicinity of the steel beam-to-column connections based on the experimental data.

A Study on the Analysis of Plane Framework Considering Nonlinearity of Member and Rotational Stiffness of Connections Joining the Beams to the Columns (부재 비선형과 접합부의 회전강성을 고려한 골조의 해석에 관한 연구)

  • 김경수;윤성기
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.319-329
    • /
    • 1999
  • 본 연구에서는 골조의 안정과 구조적인 거동에 영향을 미치는 2차 효과에 의한 기하학적 비선형 문제, 세장비가 작은 부재 단면의 소성, 보-기둥 접합부의 상태, 그리고 부재 내부에 발생되어 있는 기하학적 초기결함을 고려한 복합적인 비선형 해석프로그램을 개발하여, 철골조 구조물의 거동을 근사적으로 예측하고자 한다. 그리고, 각 비선형 해석의 신뢰성을 검증하고, 상호관계를 파악되기 위해서 각 해석에 따른 좌굴하중과 거동을 비교 검토한다.

  • PDF

A Study about Damage of Steel Beam to SRC Column Connection in a New Extension Building (증축된 건축물의 SRC 기둥과 철골보 접합부 손상에 관한 연구)

  • Shim, Hak-Bo;Park, Soon-Jeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.503-504
    • /
    • 2009
  • It is increased the necessity of the examination for safety of Steel Beam to SRC Column connection part in a new extension building. This study is presented the examination and cause analysis about damage of Steel Beam to SRC Column connection. so it is prevented collapse and extended use duration in building.

  • PDF

Analytical Study on Structural Behaviors of Post-Tensioned Column-Base Connections for Steel Modular Structures (철골 모듈러 구조물의 포스트텐션 기둥-바닥 접합부 거동에 대한 해석적 연구)

  • Choi, Kyung-Suk;Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.427-435
    • /
    • 2020
  • Modular structures are relatively lightweight compared to reinforced-concrete or steel structures. However, it is difficult to achieve structural integrity between the columns of unit modules in a modular structure, which causes undesirable effects on the lateral force resistance capacity against wind and earthquake loads. This is more prominent in modular structures whose overall heights are greater. Hence, a post-tensioned modular structural system is proposed herein to improve the lateral force resistance capacity of a typical modular structure. A post-tensioned column-base connection, which is the main component of the proposed modular structural system, is configured with shapes and characteristics that allow inducing self-centering behaviors. Finite element analysis was then performed to investigate the hysteretic behaviors of the post-tensioned column-base connection. The analysis results show that the hysteretic behaviors are significantly affected by the initial tension forces and beam-column connection details at the base.

Comparative Analysis of Column Connection Characteristics of Green Frame (그린 프레임의 기둥접합부 특성 분석)

  • Kim, Keun-Ho;Lee, Taick-Oun;Lee, Sung-Ho;Kim, Sun-Kuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.415-425
    • /
    • 2012
  • Green Frame was developed to embody a Green structural system that can provide long life, resource reduction, and availability of remodeling in apartment buildings. Composite precast concrete column and beam, the major structural material of Green Frame, can be installed precisely and promptly through connection of steels and concrete. The connection of Green Frame can be divided into four types, based on the method and characteristics of connection. To select an appropriate type for the site, a comparative analysis of the four types is necessary. The objective of this study is to compare the duration, cost, quality, and safety of four types. The findings of this study can be applied during the selection that appropriate composite precast concrete column reflected project characteristics in design phase.

Moment Resistance Performance of Each Joint for Post-Beam Frame Structure (기둥-보 뼈대구조를 위한 각부 접합부의 모멘트저항성능)

  • Park, Joo-Saeng;Hwang, Kweon-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • Japanese larch glulam was used as structural members to develop a modern engineered wood jointing system using traditional post and beam structure. For the connections comprised of traditional joining and drift-pins, structural members are processed at a pre-cut factory. As a basic study to examine and increase the whole shear performance of portal frame, pin withdrawal test and moment resistance tests were conducted on each connection. The post and beam members with specified connectors showed good bearing performance in the wood members' joining system, column-base and beam-end. Moment rigidity was a bit better in a joint with higher slenderness ratio of drift-pin, but moment resistance performances, yield moment and maximum moment, were excellent in smaller one.

Cyclic Loading Test for TSC Beam - PSRC Column Connections (TSC 합성보 - PSRC 합성기둥 접합부에 대한 주기하중 실험)

  • Hwang, Hyeon Jong;Eom, Tae Sung;Park, Hong Gun;Lee, Chang Nam;Kim, Hyoung Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.6
    • /
    • pp.601-612
    • /
    • 2013
  • In the present study, details of the TSC beam-to-PSRC column connection for low and middle seismic zones were developed. For ease construction, the top and bottom flanges of the steel section of the TSC beam were discontinuous at the joint face on purpose, while the web passes through the joint. Thus, tensile resistance of the top and bottom flanges is not considered in the calculation of nominal strength of the connection. Cyclic loading tests on two interior connections and an exterior connection were performed to verify the seismic performance. The test parameter for two interior connections was the depth of the TSC beams: 600 and 700 mm including the slab depth. The test results showed that the nominal strength of the connections predicted by KBC 2009 correlated well with the test results. The connection specimens exhibited relatively good deformation and energy dissipation capacities, greater than the requirements for the ordinary and intermediate moment frames. Ultimately, the connection specimens were failed at the story drift ratios of 3.0 to 4.0 % due to local buckling and tensile fracture of the web of the TSC beam passing through the joint. By modifying the existing provisions of ASCE, the joint shear strength of the TSC beam-PSRC column connection was evaluated.

Analytical Models of Beam-Column joints in a Unit Modular Frame (단위 모듈러 구조체의 보-기둥 접합부 해석 모델)

  • Choi, Kyung-Suk;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.663-672
    • /
    • 2014
  • Recently, modular structural systems have been applicable to building construction since they can significantly reduce building construction time. They consists of several unit modular frames of which each beam-column joint employs an access hole for connecting unit modular frames. Their structural design is usually carried out under the assumption that their load-carrying mechanism is similar to that of a traditional steel moment-resisting system. In order to obtain the validation of this assumption, the cyclic characteristics of beam-column joints in a unit modular frame should be investigate. This study carried out finite element analyses(FEM) of unit modular frames to investigate the cyclic behavior of beam-column joints with the structural influence of access holes. Analysis results show that the unit modular frames present stable cyclic response with large deformation capacities and their joints are classified into partial moment connections. Also, this study develops a simple spring model for earthquake nonlinear analyses and suggests the Ramberg-Osgood hysteretic rule to capture the cyclic response of unit modular frames.