• 제목/요약/키워드: 보행자 검출 및 추적

검색결과 23건 처리시간 0.031초

색상 정보와 HOG feature를 이용한 보행자 검출 및 추적 (Pedestrian Detection Based on the HOG feature and Color Information)

  • 한상윤;길태호;황인성;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2014년도 추계학술대회
    • /
    • pp.164-166
    • /
    • 2014
  • 본 논문에서는 HOG 기반 보행자 검출 및 추적에서, HOG feature의 슬라이딩 윈도우의 수와 피라미드 층 수가 알고리즘의 수행속도와 직접적인 관계가 있다는 것을 확인한다. 그리고 이 결과를 바탕으로 윈도우의 수와 피라마드 층 수를 줄이는 방법을 제안하여 전체적인 보행자 검출 및 추적 속도를 증가시키고자 한다. 구체적으로, 제안하는 알고리즘은 검출 단계에서 색상의 선명도를 이용하여 관심 영역을 프레임 내에 지정함으로써 슬라이딩 윈도우의 수를 줄이고, 부가적으로 피라미드 층 수 또한 줄어들어서 보행자 검출 속도를 향상시킨다. 그리고 추적 단계에서는 보행자로 검출된 윈도우의 색상 정보를 이용하여 검출된 보행자를 빠르고 정확하게 추적하는 하는 방법을 제시한다.

  • PDF

이동 카메라 영상에서 히스토그램과 컬러 정보를 이용한 다수 보행자 검출 및 추적 (Multiple Pedestrians Detection and Tracking using Histogram and Color Information from a Moving Camera)

  • 임종석;곽현욱;김욱현
    • 대한전자공학회논문지SP
    • /
    • 제41권5호
    • /
    • pp.193-202
    • /
    • 2004
  • 본 논문에서는 이동 카메라로부터 획득한 컬러 영상에서 다수의 보행자를 검출하고 추적하기 위한 히스토그램과 컬러 정보기반 알고리즘을 제안하였다. 제안한 알고리즘은 RGB 컬러 히스토그램 기법을 이용하여 인접한 보행자를 검출하고 검출된 보행자는 RGB 평균값을 이용하여 추적하였다. 따라서 보행자가 서로 인접해 있거나 약간 겹쳐진 경우에도 검출할 수 있고 보행자의 형태가 변하는 경우에도 효율적으로 추적하였다. 제안된 알고리즘에 대하여 비디오 카메라로 녹화한 영상을 컴퓨터에서 입력받아 보행자 검출과 추적 실험을 수행하여 제안한 알고리즘의 우수성을 입증하였다.

제어 가능한 카메라 환경에서 실시간 다수 물체 검출 및 관심 보행자 추적 (Real-Time Multi-Objects Detection and Interest Pedestrian Tracking in Auto-Controlled Camera Environment)

  • 이병선;이은주
    • 한국정보기술응용학회:학술대회논문집
    • /
    • 한국정보기술응용학회 2007년도 춘계학술대회
    • /
    • pp.38-46
    • /
    • 2007
  • 본 논문에서는 실시간으로 획득된 영상을 분석하여 움직이는 다수 물체를 검출하고, 카메라를 자동 제어하여 관심 보행자만을 추적하는 시스템을 제안한다. 다수 물체 영역 검출은 차영상과 이전변환 밀도값을 이용한다. 검출된 다수 물체 영역에서 사람의 구조적 정보와 형태 정보를 이용하여 나무들의 흔들림으로 인한 영역이나 차량의 움직임 영역은 제거되고, 관심 보행자 영역만을 검출하였다. 관심 보행자 추적은 무게중심 차를 이용한 움직임 정보와 k-means 알고리즘으로 구한 세 점의 평균 색상 정보를 이용한다. 원거리 관심 보행자는 인식률을 높이기 위해 줌을 실행하여 확대하고, 관심 보행자의 화면상 위치에 따라 카메라 방향을 자동으로 조정하여 관심 보행자반을 연속적으로 추적한다. 실험 결과, 제안한 시스템은 실시간으로 움직이는 다수 물체를 검출하고, 사람의 구조적 특정과 형태 정보로 관심 보행자만을 검출할 수 있었고, 움직임 정보와 색상정보로 관심 보행자를 연속적으로 추적할 수 있었다.

  • PDF

HOG-PCA와 객체 추적 알고리즘을 이용한 보행자 검출 및 추적 시스템 설계 (Design of Pedestrian Detection and Tracking System Using HOG-PCA and Object Tracking Algorithm)

  • 박찬준;오성권;김진율
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1351-1352
    • /
    • 2015
  • 본 논문에서는 지능형 영상 감시 시스템에서 보행자를 검출하고 추적을 수행하기 위해 은닉층 활성함수에 가우시안 대신 FCM를 사용한 RBFNNs 패턴분류기와 객체 추적 알고리즘인 Mean Shift를 융합한 시뮬레이터를 개발한다. 시뮬레이터는 검출부과 추적부로 나누며, 검출부에서는 입력 영상으로부터 기울기의 방향성을 이용한 HOG(Histogram of Oriented Gradient) 특징을 구하고 빠른 처리속도를 위해 PCA 알고리즘을 통해 차원수를 축소하고 pRBFNNs 패턴분류기를 통해 보행자를 검출 한다. 다음 추적부에서 객체 추적 알고리즘인 Mean Shift를 이용하여 검출된 보행자 추적을 수행한다.

  • PDF

GPU를 이용한 야간 보행자 검출과 추적 시스템 구현 (Implementation of Pedestrian Detection and Tracking with GPU at Night-time)

  • 최범준;윤병우;송종관;박장식
    • 방송공학회논문지
    • /
    • 제20권3호
    • /
    • pp.421-429
    • /
    • 2015
  • 이 논문은 적외선 영상을 이용하여 보행자를 검출하고 추적하는 방법에 관한 것이다. 영상기반 보행 검출 및 추적 처리 속도를 개선하기 위하여 병렬처리언어인 CUDA(Computer Unified Device Architecture)를 활용한다. 보행자 검출은 하르 유사 특징을 기반으로 Adaboost 알고리즘을 적용한다. Adaboost 분류는 적외선 영상으로 제작한 데이터셋을 이용하여 훈련한다. Adaboost 분류기로 보행자를 검출한 후, HSV 히스토그램을 특징점으로 파티클 필터를 이용하여 보행자를 추적하는 방법을 제안한다. 제안하는 검출 및 추적 방법을 Linux 환경에서 소프트웨어를 개발할 수 있는 NVIDIA의 Jetson TK1 개발보드 상에 구현하였다. 이 논문에서는 보행자 검출 및 추적을 CUDA 개발환경인 GPU를 이용하여 병렬처리한 결과를 나타내었다. GPU를 이용한 보행자 검출과 추적 처리 속도가 CPU 처리속도에 비하여 약 6 배 빠른 것을 확인할 수 있다.

이동 카메라 영상에서 컬러 정보를 이용한 다수 보행자 검출 및 추적 (Multiple Pedestrians Detection and Tracking using Color Information from a Moving Camera)

  • 임종석;김욱현
    • 정보처리학회논문지B
    • /
    • 제11B권3호
    • /
    • pp.317-326
    • /
    • 2004
  • 본 논문에서는 이동 카메라에서 취득한 영상에서 컬러 정보를 이용하여 다수의 보행자를 검출하고 특정 보행자를 추적하는 방법을 제안한다. 먼저 연속한 동영상 입력에 대해 BMA(Block Matching Algorithm)을 이용하여 움직임 벡터를 추출하고 움직임 보상을 한 후 차 영상을 생성한다. 다음은 이진 영상으로 변환한 후 불필요한 잡음 능을 제거하친, 프로젝션을 수행하여 보행자를 검출한다. 만약 검출된 보행자가 서로 인접하거나 겹쳐졌을 경우 RGB 컬러 정보를 이용하여 분리시킨다. 검출된 다수의 보행자로부터 특정 보행자를 추적하기 위해 보행자 가운데 영역의 RGB 컬러 정보를 이용하여 추적한다. 제안된 방법에 대하여 비디오 카메라로 녹화한 영상을 컴퓨터에서 입력받아 검출과 추적 실험을 수행한 결과, 검출 성공률이 97%, 검출 실패율이 3%로 나타났고 추적 또한 우수함을 입증하였다.

제어 가능한 카메라 환경에서 실시간 관심 보행자 검출 및 추적 (Real-Time Interested Pedestrian Detection and Tracking in Controllable Camera Environment)

  • 이병선;이은주
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 추계종합학술대회
    • /
    • pp.293-297
    • /
    • 2007
  • 본 논문에서는 실시간으로 획득된 칼라 영상에서 CMODE(Correct Multiple Object DEtection)방법을 이용하여 움직이는 다수 물체를 검출하고, 위치 정보와 색상 정보를 이용하여 관심 보행자만을 추적하는 새로운 알고리즘을 제안한다. 다수 물체가 검출되면, 사람의 구조적 특징과 형태 정보를 이용하여 나무의 흔들림이나 차량의 움직임은 제거하고 관심 보행자만을 검출한다. 검출된 관심 보행자 추적을 위한 1차 유사성 판단은 이전 관심 보행자의 무게중심과 현재 관심 보행자의 무게중심간의 거리차를 이용한다. 1차 유사성이 판단된 영역에 대하여 k-평균 알고리즘으로 세 개의 특징점을 구하고, 각 특징점의 $3{\times}3$ 영역에 대한 평균 색상값으로 2차 유사성을 판단하여 추적하도록 한다. 카메라 배율은 원거리의 보행자에 대한 추적을 용이하게 하기 위해서 조정하고, 카메라 시계(FOV: Field of View)는 보행자의 위치가 화면내의 일정 범위에 있지 않을 경우에 조정한다. 실험 결과, 제안한 CMODE 방법이 라벨링 방법보다 평균 접근 횟수가 1/4배정도 덜 접근하였으며, 평균 검출시간도 3배정도 빠르게 검출됨을 확인할 수 있었다. 나무의 흔들림으로 인한 영역이나 차량의 움직임 영역, 그림자 영역과 같이 복잡한 배경에서도 관심 보행자 검출은 평균 96.5%의 높은 검출률을 보였다. 관심 보행자 추적은 위치 정보와 색상 정보를 이용하여 평균 95%의 높은 추적률을 보였으며, 관심 보행자는 카메라 시계와 배율을 조정함으로써 연속적으로 추적할 수 있었다.

  • PDF

다수의 보행자 추적과정에서 특징정보를 이용한 보행자 검출 알고리즘 설계 (Design of Pedestrian Detection Algorithm Using Feature Data in Multiple Pedestrian Tracking Process)

  • 한명호;류창주;이상덕;한승조
    • 한국정보통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.641-647
    • /
    • 2018
  • 최근 여러 목적으로 영상 정보를 제공하는 CCTV는 지능형으로 변화하고 있으며, 컴퓨터 비전을 이용한 자동화 응용 범위가 증가하고 있다. 보행자 및 차량 등의 정확한 인식을 위해 신뢰성이 높은 검출방법을 수행하여야 하며 이를 위해 다양한 방법들이 연구되고 있다. 본 논문에서는 다수의 보행자가 움직이는 상황에서 보행자의 세 가지 특징 정보를 획득하여 다수의 보행자들을 검출하는 방법을 제안한다. 제안하는 방법은 보행자 검출 및 추적에 실패하거나 혼동되는 상황을 최소화 하면서 각각의 보행자를 구별한다. 보행자들끼리 근접하거나 겹치는 경우 미리 저장된 프레임 특징 정보를 이용하여 보행자를 구별 및 검출한다.

야간 적외선 카메라를 이용한 객체 검출 및 추적 (Object Detection and Tracking with Infrared Videos at Night-time)

  • 최범준;박장식;송종관;윤병우
    • 한국전자통신학회논문지
    • /
    • 제10권2호
    • /
    • pp.183-188
    • /
    • 2015
  • 본 논문에서는 야간 CCTV 영상을 활용하여 보행자를 검출하고 추적하는 방법을 제안하고 추적 성능을 분석한다. 유사 Haar 특징을 이용하여 Adaboost 알고리즘으로 학습하고 종속분류기로 객체를 검출한다. 파티클 필터를 활용하여 검출된 보행자를 추적한다. 야간 CCTV영상에 대하여 파티클 필터의 객체 추적에 효율적인 파티클 수와 분포를 실험을 통하여 제시하였다. 골목길 등에서 취득한 야간 CCTV영상에 대하여 검출과 추적성능을 검증하였다.

기울기 히스토그램 및 폐색 탐지를 통한 다중 보행자 추적 (Multiple Pedestrians Tracking using Histogram of Oriented Gradient and Occlusion Detection)

  • 정준용;정병만;이규원
    • 한국정보통신학회논문지
    • /
    • 제16권4호
    • /
    • pp.812-820
    • /
    • 2012
  • 본 논문에서는 지능형 감시 시스템에 부합하는 기울기 히스토그램 및 폐색 추적을 통한 다중보행자 추적 시스템을 제안한다. 먼저, 연속 영상에서 보행자의 특징을 이용하여 보행자를 검출한다. 보행자의 특징을 획득하기 위해 HOG(Histogram of Oriented Gradient)를 기반으로 기울기의 방향성을 이용한 블록별 히스토그램을 생성하고, Linear-SVM(Support Vector Machine)의 학습을 통해 보행자만을 분류한다. 다음으로 보행자의 위치정보를 이용하여 추적을 행한다. 마지막으로 추적이 끝날 경우 내용기반 검색이 가능한 움직임 궤적 디스크립터를 생성한다. 실험을 통해 제안한 방법이 기존 방법보다 빠르고 정확한 움직임 추적에 효과적임을 증명하였다.