• Title/Summary/Keyword: 보행자 검출 및 추적

Search Result 23, Processing Time 0.029 seconds

Pedestrian Detection Based on the HOG feature and Color Information (색상 정보와 HOG feature를 이용한 보행자 검출 및 추적)

  • Han, Sang-Yoon;Kil, Tae-Ho;Hwang, In-Sung;Cho, Nam-Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.11a
    • /
    • pp.164-166
    • /
    • 2014
  • 본 논문에서는 HOG 기반 보행자 검출 및 추적에서, HOG feature의 슬라이딩 윈도우의 수와 피라미드 층 수가 알고리즘의 수행속도와 직접적인 관계가 있다는 것을 확인한다. 그리고 이 결과를 바탕으로 윈도우의 수와 피라마드 층 수를 줄이는 방법을 제안하여 전체적인 보행자 검출 및 추적 속도를 증가시키고자 한다. 구체적으로, 제안하는 알고리즘은 검출 단계에서 색상의 선명도를 이용하여 관심 영역을 프레임 내에 지정함으로써 슬라이딩 윈도우의 수를 줄이고, 부가적으로 피라미드 층 수 또한 줄어들어서 보행자 검출 속도를 향상시킨다. 그리고 추적 단계에서는 보행자로 검출된 윈도우의 색상 정보를 이용하여 검출된 보행자를 빠르고 정확하게 추적하는 하는 방법을 제시한다.

  • PDF

Multiple Pedestrians Detection and Tracking using Histogram and Color Information from a Moving Camera (이동 카메라 영상에서 히스토그램과 컬러 정보를 이용한 다수 보행자 검출 및 추적)

  • 임종석;곽현욱;김욱현
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.193-202
    • /
    • 2004
  • This paper presents a novel histogram and color information based algorithm for detecting and tracking multiple pedestrians from a moving camera. In the proposed method, RGB color histogram is used to detect adjacent pedestrians and RGB mean value is used to track detected pedestrians. Therefore, our algorithm detect contiguous or a few occluded pedestrians and track in case pedestrian's shape change. The experimental results on our test sequences demonstrate the high efficiency of our method.

Real-Time Multi-Objects Detection and Interest Pedestrian Tracking in Auto-Controlled Camera Environment (제어 가능한 카메라 환경에서 실시간 다수 물체 검출 및 관심 보행자 추적)

  • Lee, Byung-Sun;Rhee, Eun-Joo
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2007.05a
    • /
    • pp.38-46
    • /
    • 2007
  • 본 논문에서는 실시간으로 획득된 영상을 분석하여 움직이는 다수 물체를 검출하고, 카메라를 자동 제어하여 관심 보행자만을 추적하는 시스템을 제안한다. 다수 물체 영역 검출은 차영상과 이전변환 밀도값을 이용한다. 검출된 다수 물체 영역에서 사람의 구조적 정보와 형태 정보를 이용하여 나무들의 흔들림으로 인한 영역이나 차량의 움직임 영역은 제거되고, 관심 보행자 영역만을 검출하였다. 관심 보행자 추적은 무게중심 차를 이용한 움직임 정보와 k-means 알고리즘으로 구한 세 점의 평균 색상 정보를 이용한다. 원거리 관심 보행자는 인식률을 높이기 위해 줌을 실행하여 확대하고, 관심 보행자의 화면상 위치에 따라 카메라 방향을 자동으로 조정하여 관심 보행자반을 연속적으로 추적한다. 실험 결과, 제안한 시스템은 실시간으로 움직이는 다수 물체를 검출하고, 사람의 구조적 특정과 형태 정보로 관심 보행자만을 검출할 수 있었고, 움직임 정보와 색상정보로 관심 보행자를 연속적으로 추적할 수 있었다.

  • PDF

Design of Pedestrian Detection and Tracking System Using HOG-PCA and Object Tracking Algorithm (HOG-PCA와 객체 추적 알고리즘을 이용한 보행자 검출 및 추적 시스템 설계)

  • Park, Chan-Jun;Oh, Sung-Kwun;Kim, Jin-Yul
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1351-1352
    • /
    • 2015
  • 본 논문에서는 지능형 영상 감시 시스템에서 보행자를 검출하고 추적을 수행하기 위해 은닉층 활성함수에 가우시안 대신 FCM를 사용한 RBFNNs 패턴분류기와 객체 추적 알고리즘인 Mean Shift를 융합한 시뮬레이터를 개발한다. 시뮬레이터는 검출부과 추적부로 나누며, 검출부에서는 입력 영상으로부터 기울기의 방향성을 이용한 HOG(Histogram of Oriented Gradient) 특징을 구하고 빠른 처리속도를 위해 PCA 알고리즘을 통해 차원수를 축소하고 pRBFNNs 패턴분류기를 통해 보행자를 검출 한다. 다음 추적부에서 객체 추적 알고리즘인 Mean Shift를 이용하여 검출된 보행자 추적을 수행한다.

  • PDF

Implementation of Pedestrian Detection and Tracking with GPU at Night-time (GPU를 이용한 야간 보행자 검출과 추적 시스템 구현)

  • Choi, Beom-Joon;Yoon, Byung-Woo;Song, Jong-Kwan;Park, Jangsik
    • Journal of Broadcast Engineering
    • /
    • v.20 no.3
    • /
    • pp.421-429
    • /
    • 2015
  • This paper is about an approach for pedestrian detection and tracking with infrared imagery. We used the CUDA(Computer Unified Device Architecture) that is a parallel processing language in order to improve the speed of video-based pedestrian detection and tracking. The detection phase is performed by Adaboost algorithm based on Haar-like features. Adaboost classifier is trained with datasets generated from infrared images. After detecting the pedestrian with the Adaboost classifier, we proposed a particle filter tracking strategies on HSV histogram feature that exploit adaptively at the same time. The proposed approach is implemented on an NVIDIA Jetson TK1 developer board that is full-featured device ideal for software development within the Linux environment. In this paper, we presented the results of parallel processing with the NVIDIA GPU on the CUDA development environment for detection and tracking of pedestrians. We compared the object detection and tracking processing time for night-time images on both GPU and CPU. The result showed that the detection and tracking speed of the pedestrian with GPU is approximately 6 times faster than that for CPU.

Multiple Pedestrians Detection and Tracking using Color Information from a Moving Camera (이동 카메라 영상에서 컬러 정보를 이용한 다수 보행자 검출 및 추적)

  • Lim, Jong-Seok;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.11B no.3
    • /
    • pp.317-326
    • /
    • 2004
  • This paper presents a new method for the detection of multiple pedestrians and tracking of a specific pedestrian using color information from a moving camera. We first extract motion vector on the input image using BMA. Next, a difference image is calculated on the basis of the motion vector. The difference image is converted to a binary image. The binary image has an unnecessary noise. So, it is removed by means of the proposed noise deletion method. Then, we detect pedestrians through the projection algorithm. But, if pedestrians are very adjacent to each other, we separate them using RGB color information. And we track a specific pedestrian using RGB color information in center region of it. The experimental results on our test sequences demonstrated the high efficiency of our approach as it had shown detection success ratio of 97% and detection failure ratio of 3% and excellent tracking.

Real-Time Interested Pedestrian Detection and Tracking in Controllable Camera Environment (제어 가능한 카메라 환경에서 실시간 관심 보행자 검출 및 추적)

  • Lee, Byung-Sun;Rhee, Eun-Joo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.293-297
    • /
    • 2007
  • This thesis suggests a new algorithm to detects multiple moving objects using a CMODE(Correct Multiple Object DEtection) method in the color images acquired in real-time and to track the interested pedestrian using motion and hue information. The multiple objects are detected, and then shaking trees or moving cars are removed using structural characteristics and shape information of the man , the interested pedestrian can be detected, The first similarity judgment for tracking an interested pedestrian is to use the distance between the previous interested pedestrian's centroid and the present pedestrian's centroid. For the area where the first similarity is detected, three feature points are calculated using k-mean algorithm, and the second similarity is judged and tracked using the average hue value for the $3{\times}3$ area of each feature point. The zooming of camera is adjusted to track an interested pedestrian at a long distance easily and the FOV(Field of View) of camera is adjusted in case the pedestrian is not situated in the fixed range of the screen. As a experiment results, comparing the suggested CMODE method with the labeling method, an average approach rate is one fourth of labeling method, and an average detecting time is faster three times than labeling method. Even in a complex background, such as the areas where trees are shaking or cars are moving, or the area of shadows, interested pedestrian detection is showed a high detection rate of average 96.5%. The tracking of an interested pedestrian is showed high tracking rate of average 95% using the information of situation and hue, and interested pedestrian can be tracked successively through a camera FOV and zooming adjustment.

  • PDF

Design of Pedestrian Detection Algorithm Using Feature Data in Multiple Pedestrian Tracking Process (다수의 보행자 추적과정에서 특징정보를 이용한 보행자 검출 알고리즘 설계)

  • Han, Myung-ho;Ryu, Chang-ju;Lee, Sang-duck;Han, Seung-jo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.641-647
    • /
    • 2018
  • Recently, CCTV, which provides video information for multiple purposes, has been transformed into an intelligent, and the range of automation applications increased using the computer vision. A highly reliable detection method must be performed for accurate recognition of pedestrians and vehicles and various methods are being studied for this purpose. In such an object detection system. In this paper, we propose a method to detect a large number of pedestrians by acquiring three characteristic information that features of color information using HSI, motion vector information and shaping information using HOG feature information of a pedestrian in a situation where a large number of pedestrians are moving. The proposed method distinguishes each pedestrian while minimizing the failure or confusion of pedestrian detection and tracking. Also when pedestrians approach or overlap, pedestrians are identified and detected using stored frame feature data.

Object Detection and Tracking with Infrared Videos at Night-time (야간 적외선 카메라를 이용한 객체 검출 및 추적)

  • Choi, Beom-Joon;Park, Jang-Sik;Song, Jong-Kwan;Yoon, Byung-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.183-188
    • /
    • 2015
  • In this paper, it is proposed to detect and track pedestrian and analyse tracking performance with nighttime CCTV video. The detection is performed by a cascade classifier with Haar-like feature trained with Adaboost algorithm. Tracking pedestrian is performed by a particle filter. As results of experiments, it is introduced that efficient number of particles and the distributions are applied to track pedestrian at the night-time. Performance of detection and tracking is verified with nighttime CCTV video that is obtained at alleys etc.

Multiple Pedestrians Tracking using Histogram of Oriented Gradient and Occlusion Detection (기울기 히스토그램 및 폐색 탐지를 통한 다중 보행자 추적)

  • Jeong, Joon-Yong;Jung, Byung-Man;Lee, Kyu-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.812-820
    • /
    • 2012
  • In this paper, multiple pedestrians tracking system using Histogram of Oriented Gradient and occlusion detection is proposed. The proposed system is applicable to Intelligent Surveillance System. First, we detect pedestrian in a image sequence using pedestrian's feature. To get pedestrian's feature, we make block-histogram using gradient's direction histogram based on HOG(Histogram of Oriented Gradient), after that a pedestrian region is classified by using Linear-SVM(Support Vector Machine) training. Next, moving objects are tracked by using position information of the classified pedestrians. And we create motion trajectory descriptor which is used for content based event retrieval. The experimental results show that the proposed method is more fast, accurate and effective than conventional methods.