• Title/Summary/Keyword: 보통 포틀랜드 시멘트

Search Result 228, Processing Time 0.034 seconds

An Experimental Study on Filling Material for Bored Pile Using High Calcium Ash (고칼슘 연소재를 이용한 매입말뚝의 주면고정액에 관한 실험적 연구)

  • Song, Sang-Hwon;Lim, Yang-Hyun;Seo, Se-Gwan;Cho, Dae-Sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.13-20
    • /
    • 2017
  • In this study, laboratory tests were performed to evaluate for new filling materials (ZA-Soil) for bored pile that were developed using by high calcium ash. As a result of laboratory test, the uniaxial compression strength of 2 types of ZA-Soil are shown 68.0% and 64.6% compared to ordinary portland cement. And it have a suitable flowability and environmental stability. Also, after 28days, uniaxial compression strength of material mixed with soil and high strength filling material (ZA-Soil) for bored pile is 1.10-1.23 times bigger than material mixed with ordinary portland cement.

Preparation and Application of CSA Expansive Additives Using Industrial Wastes (산업폐기물을 이용한 CSA계 팽창재 제조 및 응용)

  • Yoon Sung-Won;Rho Jae-Seong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.369-374
    • /
    • 2004
  • Calcium sulfoalumiante(CSA) was prepared for using natural calcite($CaCO_3$) and industrial by-products and wastes, such as $Al(OH)_3,\;CaSO_4{\cdot}2H_2O$. The mixture of raw materials was fired at 20, 400, 600, $1200^{\circ}C$ for 1h and cooled rapidly in air. The cement replaced by 10 wt% $C_4A_3S$ expansive additives was investigated by the measurement of the hydration products and compressive strength, setting time, expansion at wet curing condition. $C_4A_3S$ was found in x-ray diffraction pattern over the temperature $1200^{\circ}C$. The setting time or the cement pastes added clinkers fired at different temperature was shorter than ordinary portland cement. The compressive strength was higher than the ordinary portland cement about 20~30%. The mainly hydration products were ettringite, and $Ca(OH)_2$. The expansion due to the formation of ettringite during hydration decreased the drying shrinkage of hardened cement rather than the ordinary portland cement.

A Feasibility Study on the Application of Ferrosilicon By-Product in Concrete to Replace Silica Fume (콘크리트 내 실리카퓸을 대체하기 위한 페로실리콘 산업부산물의 활용 적절성에 대한 연구)

  • Kim, Hansol;Cho, Won Jung;Ann, Ki Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.413-422
    • /
    • 2019
  • A ferrosilicon (FS) by-product was applied into a cementitious binder in concrete substituting the ordinary Portland cement (OPC). The original material characteristic of FS is very identical to silica fume (SF) regarding chemical composition and physical properties such as specific surface area and specific gravity. Therefore, the FS and SF concrete or mortal of which 10% of the material was replaced to total binder weight were fabricated to evaluate the feasibility of using F S as a binder, and the comparative information of OPC, FS and SF concrete was given. The hydration characteristic of FS concrete was analyzed using X-ray diffraction analysis. The FS concrete was beneficial in compressive strength, resistivity against chloride ingress and reducing porosity considering performance of OPC concrete but the advantage was less than using SF. A possibility of alkali-silica expansion was found out from the FS concrete due to the agglomerated size of the silica particles.

A Study on the Reinforcement Effect Analysis of Aging Reservoir using Grout Material recycled Power Plant Byproduct (발전부산물을 재활용한 그라우트재의 노후 저수지 보강효과 분석에 관한 연구)

  • Seo, Se-Gwan;An, Jong-Hwan;Cho, Dae-sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.2
    • /
    • pp.23-33
    • /
    • 2021
  • In Korea, many reservoirs have been built for the purpose of solving the food shortage problem and supplying agricultural water. However, the current 75.6% of the reservoirs are in serious aged as more than 50 years have passed since the year of construction. In the case of such an aging reservoir, the stability due to scour and erosion inside the reservoir is very reduced, and if concentrated rainfall due to recent abnormal weather occurs, the aging reservoir may collapse, leading to a lot of damage to property and human life. Accordingly, each agency that manages aging reservoirs uses Ordinary Portland Cement (OPC) as an injection material and applies the grouting method. However, in the case of OPC, it may deteriorate over time and water leakage may occur again. And there are environmental problems such as consumption of natural resources and generation of greenhouse gases. So, there is a need to develop new materials and methods that can replace the OPC. In this study, an laboratory test and analysis were performed on the grout material developed to induce a curing reaction similar to that of OPC by recycling power plant byproduct. In addition, test in the field such as electric resistivity survey, Standard Penetration Test (SPT), and field permeability test were performed to analyzed to reinforcement effect and determine the possibility of using instead of OPC. As a results of the test, in the case of recycled power plant byproduct, the compressive strength was 2.9 to 3.2 times and the deformation modulus was 2.3 to 3.3 times higher, indicating that it is excellent in strength and can be used instead of OPC. And it was analyzed that the N value of the reservoir was increased by 1~2, and the coefficient of permeability (k) decreased to the level of 8.9~42.5%. showing sufficient reinforcing effect in terms of order.

Hydration Properties of Ordinary Portland Cement Using Mixture of Limestone and Blast Furnace Slag as Minor Inorganic Additives (소량 혼합재로서 석회석과 고로슬래그를 복합 사용한 보통 포틀랜드 시멘트의 수화특성)

  • Lee, Seung-Heun;Lim, Young-Jin;Cho, Jae-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.3-9
    • /
    • 2015
  • In this study, hydration properties of ordinary Portland cement were examined, shown from a limestone and blast furnace slag alone or their mixture up to 10% as a minor mineral additives. As of setting time, it was identified that final setting became faster as the amount of limestone mixture increased, which showed limestone accelerated early hydration faster than blast furnace slag. This is because limestone did accelerate the hydration of alite. At the age of 3 days, limestone 5%-blast furnace slag 5% mixture had the highest compressive strength of mortar. It is because hydration acceleration of alite by limestone, and $Ca(OH)_2$ that was additionally formed by hydration acceleration of alite reacted with blast furnace slag, and as a result, additionally created C-S-H hydrate. Regarding the hydration properties by the age of 7 and 28 days, limestone 3%-blast furnace slag 7% of composited mixture showed the largest compressive strength, and in comparison with the 3 days in curing age. This period is when hydration reaction of blast furnace slag is active and the amount of hydrate depends on the amount of blast furnace slag mixture more than that of the limestone mixture. And in order to vitalize hydration reaction of blast furnace slag the amount of $Ca(OH)_2$ created has to increase, and thus, a small amount of limestone is necessary that can accelerate the hydration of alite. Therefore, after the age of 7 days, the fact that there were a large amount of blast furnace slag mixture and small amount of limestone mixture was effective to the strength development of ordinary Portland cement.

Study on the Physical Properties of Ordinary Portland Cement and Slag Cement with the Addition of Cement Bypass Dust (시멘트 바이패스 분진 첨가에 따른 보통 포틀랜드 시멘트와 슬래그 시멘트의 물리특성 연구)

  • Jae Jun Choi;Sun Mok Lee;Ju Chan Jang;Yang Seok Oh;Yun Yong Kim
    • Resources Recycling
    • /
    • v.33 no.4
    • /
    • pp.15-21
    • /
    • 2024
  • This study examines the possibility of using cement bypass dust (CBPD), a by-product of the cement industry, as a raw material for hardening agents. To this end, the effect of adding CBPD to ordinary Portland cement (OPC) and slag cement on the physical properties, such as fluidity and compressive strength, was investigated. As the amount of CBPD added increased to 25%, 50%, and 75%, both the fluidity and compressive strength decreased. However, the decrease was smaller in slag cement than in OPC. When 25% CBPD was added, the 7-day compressive strength was 28.15 MPa, which is approximately 70% higher than that of the commercially available hardening agents (16.5 MPa). This confirms the potential of CBPD as a raw material for hardening agents.

Experimental Study on Cement Cohesion Reduction Effect of Grout Mixer with Vibration Filter (진동필터가 설치된 그라우트 믹서의 시멘트 응집 저감 효과에 대한 실험적 연구)

  • Hwang, Sung-Pil;Jeoung, Jae-Hyeung;Kim, Chang-Yong;Lee, Woo-Je
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.61-67
    • /
    • 2018
  • Grouting is reinforcement or cutoff method which uses the hardening agent which is typically represented by portland cement and injected into the ground or the structure. When mixing the cement in powder form with water, the particles tend to cohere each other. Once they cohered, the particle size tends to become larger while injection efficiency becomes lower. This study, in a bid to reduce the cohesion of cement, the screen was set inside the grout mixer so that the cement particles are separated while vibrating them. To validate the effect of vibration screen, comparison test was conducted by using ordinary portland cement, slag cement and micro cement. Viscosity test, bleeding test and grain-size analysis indicated that the characteristics varied significantly after passing through the vibration filter. It is expected that the vibration filter installed inside the grout mixer will reduce the cement cohesion when mixing with water.

A Study on the Watertightness Improvement of Cementitious Material for Durability Improvement of Concrete (콘크리트 내구성 향상을 위한 시멘트 재료의 수밀성 개선에 관한 연구)

  • Kang, Hyun-Ju;Song, Myong-Shin;Jeong, Eui-Dam
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.17-25
    • /
    • 2010
  • We studied on the watertightness improvement of cementitious material for durability enhancement of concrete. For improvement of watertightness of OPC and OPC with fly ash, we used various materials with watertightness properties to OPC and OPC with fly ash. The performance of watertightness improvement of cementitious materials closely related to formation of CSH by pozzolanic reaction and to reducing of size of contact angle in cement pore by using organic fatty acid. And volume of CSH formation at early hydration have an influence of watertightness improvement and reduction of long-term water absorption rate. In using of fly ash, improvement of workability by using the spherical fly ash caused to densify on the structures of cement material and CSH formation by pozzolanic reaction and cement using fly ash also caused watertightness improvement of cementitious materials. For improvement of concrete durability by watertightness, cementitious materials need using watertightness materials and at using fly ash, also it have to the effect of improvement of watertightness of cementitious materials by pozzolanic reaction.

A Study on Manufacture standardization of High Strength Concrete to Use Moderate Heat Portland Cement (벨라이트계 시멘트를 이용한 고강도 콘크리트 제조표준화에 관한 연구)

  • Park, Cheol;Kim, Dong-Suck;Um, Tai-Sun;Lee, Jong-Ryul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.665-668
    • /
    • 2008
  • Recently the city construction and the concrete structures are more becoming extra weight and the efficient use of the space by the population intensively and follow in industrial intensive commerce and the residence commerce composition building which leads the high story of the building. Consequently the high rise of the building which space applies efficiently in objective which will increase continuously. Also with high rise of buildings durability it will be able to increase the life of the structure is emphasized and the concrete structure is demanding the more high strength.

  • PDF

Environmentally Adaptive Stabilization of the Hazardous Heavy Metal Waste by Cementious Materials(II) (산업폐기물 중의 유해중금속의 환경친화적 안정화 처리(II))

  • Won, Jong-Han;Choi, Kwang-Hui;Choi, Sang-Hul;Lee, Hun-Ha;Sohn, Jin-Gun;Shim, Kwang-Bo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1138-1142
    • /
    • 2002
  • Slag cement and supersulfated slag cement were fabricated by mixing blast furnace slag and ordinary portland cement and adapted to solidify/stabilize heavy metal contained hazardous waste sludge. In case of slag cement, it showed continuous increase of their compressive strengths, which is attributed to the formation of the C-S-H, ettringite and monosulfate with STS sludge. However, BF and COREX sludge has a different shape and composition. therefore, adequate compressive strength could not be achieved with this slag cement. In case of the mixture of the each sludge like the STS-BF or the STS-COREX, the compressive strength over the standard level for disposing the wastes could be obtained with slag cement. The supersulfated slag cement that contain accelerators was very effective in solidifying the COREX sludge, which was difficult to solidify using different cement and obtained high compressive strength only for 3 days.