• Title/Summary/Keyword: 보크사이트

Search Result 11, Processing Time 0.028 seconds

Overview on the Trend Analysis for the Dealkalization Technology of Bauxite Residues (보크사이트 제련 잔재물의 중화기술 동향 분석)

  • Pyeong Seop Seo;Man Seung Lee
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.3-12
    • /
    • 2023
  • Bauxite residues represent industrial wastes that have been accumulating over the past 120 years since the beginning of the alumina industry. They are typically classified as harmful substances owing to their strong alkalinity and salinity characteristics. These residues, with quantities steadily increasing by more than 150 million tons annually worldwide, are recycled into various industrial materials using dealkalization processing. This study investigates the generation process of alkaline substances in bauxite smelting and the recent techniques adopted for controlling their alkalinity. The properties of bauxite residues are known to vary depending on the raw mining and digestion methods. Thus, the dealkalization process must be selected considering the type of alkaline material, local environment, and infrastructure.

Removal of Sodium Contained in Al(OH)3 Synthesized by Bayer Process (베이어법으로 합성된 Al(OH)3에 함유된 미량 Na 성분의 제거)

  • Choi, Hee-Young;Kim, Do-Hyeong;Park, No-Kuk;Lee, Tae-Jin;Kang, Mi-Sook;Lee, Won-Gun;Kim, Heun-Duk;Park, Jun-Woo
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.63-68
    • /
    • 2012
  • In this study, aluminum hydroxide ($Al(OH)_3$) was synthesized by Bayer process and sodium contained in $Al(OH)_3$ was removed with the acid solution such as HCl and acetic acid for the synthesis of high purity alumina. The bauxite produced in Queensland of Australia was used for the production of alumina by Bayer, and was crushed to a particle size of below 10 um by attrition mill. The crushed bauxite was treated in sodium hydroxide solution of 5 N for the elution of aluminum component. The elution of aluminum from bauxite was carried out at $140^{\circ}C$ and 3.4 atm in autoclave. The sample solution was separated to the red mud and liquid solution by filter paper. The elution of aluminum from bauxite was confirmed with changing a structure and aluminum content in both bauxite and red mud analyzed by XRD and EDX. Aluminum contained in the separated solution was crystallized to $Al(OH)_3$ with the addition of aluminum hydroxide used as the seed material. $Al(OH)_3$ powder obtained during the crystallization process was purified by several times washing with distillated water. It was also confirmed that the sodium remained in $Al(OH)_3$ powder is removed with acid solution. The purity of $Al(OH)_3$ powder produced in this study was 99.3% and the content of sodium was reduced to approximately 0.009% after the acid treatment.

An Experimental Study on Mechanical Properties of Ultra-High Strength Powder Concrete (압축강도 300MPa 이상의 초고강도 분체콘크리트 개발을 위한 실험적 연구)

  • Jo, Byung-Wan;Yoon, Kwang-Won;Park, Jung-Hoon;Kim, Heoun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.287-295
    • /
    • 2010
  • In this study, ordinary Portland cement was used and the air void was minimized by using minute quartz as the filler. In addition, steel fibers were used to mitigate the brittle failure problem associated with high strength concrete. This study is in progress to make an Ultra-high strength powdered concrete (UHSPC) which has compressive strength over 300 MPa. To increase the strength of concrete, we have compared and analyzed the compressive strengths of the concretes with different mix proportions and curing conditions by selecting quartz sand, dolomite, bauxite, ferro silicon which have diameters less than 0.6 mm and can increase the bond strength of the transition zone. Ultra-high strength powdered concrete, which is different from conventional concrete, is highly influenced by the materials in the mix. In the study, the highest compressive strength of the powdered concrete was obtained when it is prepared with ferro silicon, followed in order by Bauxite, Dolomite, and Quartz sand. The amount of ferro silicon, when the highest strength was obtained, was 110%, of the weight of the cement. SEM analysis of the UHSPC showed that significant formation of C-S-H and Tobermorite due to high temperature and pressure curing. Production of Ultrahigh strength powdered concrete which has 28-day compressive strength upto 341MPa has been successfully achieved by the following factors; steel fiber reinforcement, fine particled aggregates, and the filling powder to minimize the void space, and the reactive materials.

A Study of Alkali Metal Vapor Adsorption Behavior by Using Pressurized Reactor (가압반응기를 이용한 알칼리금속증기 흡착특성에 관한 연구)

  • 전수한;최병철;김형택
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.114-121
    • /
    • 2002
  • Alkali metal compounds existed in original coal or sorbents are exhausted as vapor or small particle at the outlet of combustor when operating PFBC power plant. These compounds can be removed with dust removal equipment, but total generation efficiency will be decreased because of lower operating temperature of dust removal equipment. Alkali metal contained in vapor phase is initially deposited onto turbine blade results in serious corrosion. The concentration of alkali vapor in the PFBC flue gas is 20∼40 ppm which is dependent on mineral characteristics and composition as well as operating condition of PFBC. However, the allowance limit of alkali metal vapor is assigned as less than 50 ppb for gas turbine when coal or oil is used as fuel. Therefore, alkali metal vapor in PFBC or IGCC process should be removed by solid sorbents to prevent corrosion of turbine blade and improve plant efficiency. In the present investigation, powder of Bauxite, Kaolinite and Limestone is used in the preparation of cylinder-type pellet which is inserted into the pressurized alkali removal reactor for the alkali absorption experiment. Experimental results showed that the alkali removal efficiency in the order of Bauxite, Kaolinite and Limestone. Alkali vapor removal efficiency is related with reaction temperature, porosity of pellet and alkali vapor concentration of flue gas.

Strength Characteristic and Color Difference Analysis of Cement Mortar According to the Amount of Liquefied Red Mud (액상화 레드머드의 첨가량에 따른 시멘트 모르타르의 강도특성 및 색차 분석)

  • Kang, Suk-Pyo;Kang, Hye-Ju
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.146-152
    • /
    • 2018
  • In the construction sector, new demands for aesthetics are increasing due to structural stability and improvement of living standard and consciousness level. On the other hand, Red Mud sludge is generated from aluminum hydroxide extraction process from Bauxite. Red mud sludge contains about 20% of $Fe_2O_3$ and represents a natural reddish brown. It is highly applicable to the construction industry. In this paper, red mud sludge with a water content of 50%, which is a by - product of the industry, was prepared as a liquid phase. The liquefied red mud was added to cement mortar and the strength and color difference of cement mortar were investigated according to the addition amount of liquefied red mud. As a result, the compressive strength decreased with increasing amount of liquefied red mud. The color of cement mortar containing liquefied red mud was found to be distributed in the range of YR series in all samples. As the amount of liquefied red mud increased, the color became darker.

Characteristics on Compressive Strength of Cement Paste with Content of LRM Neutralized by Nitric Acid and Sulfuric Acid (질산 및 황산에 의해 중화된 액상화 레드머드의 첨가량에 따른 시멘트 페이스트의 압축강도 특성)

  • Kang, Suk-Pyo;Lee, Hee-Ra;Kang, Hye-Ju;Lee, Byeong-Gi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.333-340
    • /
    • 2019
  • Red mud is an industrial by-product produced during the manufacturing aluminum hydroxide (Al(OH)3) and aluminum oxide(Al2O3) from Bauxite ores. In Korea, aproximately 2 tons of red mud in a sludge form with 50% moisture content is produced when 1ton of Al2O3 is produced through the Bayer process. Neutralization of red mud will help to reduce the environmental impact caused due to its storage and also lessen significantly the ongoing management of the deposits after closure. It will also open opportunities for re-use of the residue which to date have been prevented because of the high pH. Moreover, attention to liquefied red mud(LRM) that does not require heating and grinding process for recycling is needed. In this paper, characteristics of compressive strength for cement paste with content of LRM neutralized by nitric acid and sulfuric acid. The results showed that compressive strength of cement paste with neutralized LRM is higher than that of cement paste with LRM.

Overview and Future Concerns for Red Mud Recycling Technology and Industry (알루미나 제조 공정 산출물 레드머드의 재활용 현황과 기술개발 동향 분석)

  • Hong, Hyun-Seon;Kim, Ye-lin;Cho, Hyun-Jung;Kim, Dae-Weon;Kim, Dae-woong;Kim, Hyeong-Jun;Kim, Yong;Kim, Sung-pyo
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.12-21
    • /
    • 2017
  • Red mud generated in the alumina manufacturing process contains various valuable resources, but it is not comprehensively recycled yet causing severe environmental problems. In Korea, red mud is producing about 200,000 tons annually and most of them are landfilled or disposed. Red mud's recycling technology is also being developed in many countries, but red mud's recycling technologies are still lacking compared to the production rate. In this study, we analyzed the characteristics and the amount of red mud, and the current status and technology development trend. Red mud has shown that recycling studies are being carried out in fields such as construction, recycling, metal recovery, adsorbent, and pollution stabilization. In particular, technologies for recovering rare earths have been developed as worldwide because of their high economic value. The data analyzed in this study will be used as basic data for the further development of technologies in the future.