• Title/Summary/Keyword: 보정항법시스템

Search Result 202, Processing Time 0.027 seconds

Method of BeiDou Pseudorange Correction for Multi-GNSS Augmentation System (멀티 GNSS 보정시스템을 위한 BeiDou 의사거리 보정기법)

  • Seo, Ki-Yeol;Kim, Young-Ki;Jang, Won-Seok;Park, Sang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2307-2314
    • /
    • 2015
  • This paper focuses on the generation algorithm of BeiDou pseudorange correction (PRC) and simulation based performance verification for design of Differential Global Navigation Satellite System (DGNSS) reference station and integrity monitor (RSIM) in order to prepare for recapitalization of DGNSS. First of all, it discusses the International standard on DGNSS RSIM, based on the interface control document (ICD) for BeiDou, estimates the satellite position using satellite clock offset and user receiver clock offset, and the system time offset between Global Positioning System (GPS) and BeiDou. Using the performance verification platform interfaced with GNSS (GPS/BeiDou) simulator, it calculates the BeiDou pseudorange corrections , compares the results of position accuracy with GPS/DGPS. As the test results, this paper verified to meet the performance of position accuracy for DGNSS RSIM operation required on Radio Technical Commission for Maritime Services (RTCM) standard.

Service Coverage Enhancement due to Output Power of Korean Land-based DGPS (국내 DGPS 내륙 기준국의 출력 증강에 따른 서비스 영역 분석)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2059-2064
    • /
    • 2011
  • The DGPS systems that is a GPS augmentation system were installed for ocean- and land-service. The ocean-based reference station of 11 site and the land-based reference station of 6 sites are operating for ocean- and land-service. Although the land-based reference stations provide the output power of 500W, the service shadow regions are occurred due to mountain lands and building area. In this paper, the service coverages for land-based reference stations are analyzed in conditions of output power enhancements of reference station. The service shadow areas are deduced from service coverages of land-based reference stations and ocean-based reference stations. The medium frequency-band wave propagation models are considered as DGPS wave propagation model. The service coverages are analyzed by considering the compensated ground surface-conductivity.

Lever Arm Compensation of Reference Trajectory for Flight Performance Evaluation of DGPS/INS installed on Aircraft (항공기에 탑재된 DGPS/INS 복합항법 장치의 비행 시험 성능 평가를 위한 기준궤적의 Lever Arm 보정)

  • Park, Ji-Hee;Lee, Seong-Woo;Park, Deok-Bae;Shin, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1086-1092
    • /
    • 2012
  • It has been studied for DGPS/INS(Differential Global Positioning System/Inertial Navigation System) to offer the more precise and reliable navigation data with the aviation industry development. The flight performance evaluation of navigation system is very significant because the reliability of navigation data directly affect the safety of aircraft. Especially, the high-level navigation system, as DGPS/INS, need more precise flight performance evaluation method. The performance analysis is performed by comparing between the DGPS/INS navigation data and reference trajectory which is more precise than DGPS/INS. The GPS receiver, which is capable of post-processed CDGPS(Carrier-phase DGPS) method, can be used as reference system. Generally, the DGPS/INS is estimated the CG(Center of Gravity) point of aircraft while the reference system is output the position of GPS antenna which is mounted on the outside of aircraft. For this reason, estimated error between DGPS/INS and reference system will include the error due to lever arm. In order to more precise performance evaluation, it is needed to compensate the lever arm. This paper presents procedure and result of flight test which includes lever arm compensation in order to verify reliability and performance of DGPS/INS more precisely.

Implementation of Precise Drone Positioning System using Differential Global Positioning System (차등 위성항법 보정을 이용한 정밀 드론 위치추적 시스템 구현)

  • Chung, Jae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.14-19
    • /
    • 2020
  • This paper proposes a precise drone-positioning technique using a differential global positioning system (DGPS). The proposed system consists of a reference station for error correction data production, and a mobile station (a drone), which is the target for real-time positioning. The precise coordinates of the reference station were acquired by post-processing of received satellite data together with the reference station location data provided by government infrastructure. For the system's implementation, low-cost commercial GPS receivers were used. Furthermore, a Zigbee transmitter/receiver pair was used to wirelessly send control signals and error correction data, making the whole system affordable for personal use. To validate the system, a drone-tracking experiment was conducted. The results show that the average real-time position error is less than 0.8 m.

Development of a Test Environment for Performance Evaluation of the Vision-aided Navigation System for VTOL UAVs (수직 이착륙 무인 항공기용 영상보정항법 시스템 성능평가를 위한 검증환경 개발)

  • Sebeen Park;Hyuncheol Shin;Chul Joo Chung
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.788-797
    • /
    • 2023
  • In this paper, we introduced a test environment to test a vision-aided navigation system, as an alternative navigation system when global positioning system (GPS) is unavailable, for vertical take-off and landing (VTOL) unmanned aerial system. It is efficient to use a virtual environment to test and evaluate the vision-aided navigation system under development, but currently no suitable equipment has been developed in Korea. Thus, the proposed test environment is developed to evaluate the performance of the navigation system by generating input signal modeling and simulating operation environment of the system, and by monitoring output signal. This paper comprehensively describes research procedure from derivation of requirements specifications to hardware/software design according to the requirements, and production of the test environment. This test environment was used for evaluating the vision-aided navigation algorithm which we are developing, and conducting simulation based pre-flight tests.

Development of Real-Time Vision Aided Navigation Using EO/IR Image Information of Tactical Unmanned Aerial System in GPS Denied Environment (GPS 취약 환경에서 전술급 무인항공기의 주/야간 영상정보를 기반으로 한 실시간 비행체 위치 보정 시스템 개발)

  • Choi, SeungKie;Cho, ShinJe;Kang, SeungMo;Lee, KilTae;Lee, WonKeun;Jeong, GilSun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.6
    • /
    • pp.401-410
    • /
    • 2020
  • In this study, a real-time Tactical UAS position compensation system based on image information developed to compensate for the weakness of location navigation information during GPS signal interference and jamming / spoofing attack is described. The Tactical UAS (KUS-FT) is capable of automatic flight by switching the mode from GPS/INS integrated navigation to DR/AHRS when GPS signal is lost. However, in the case of location navigation, errors accumulate over time due to dead reckoning (DR) using airspeed and azimuth which causes problems such as UAS positioning and data link antenna tracking. To minimize the accumulation of position error, based on the target data of specific region through image sensor, we developed a system that calculates the position using the UAS attitude, EO/IR (Electric Optic/Infra-Red) azimuth and elevation and numerical map data and corrects the calculated position in real-time. In addition, function and performance of the image information based real-time UAS position compensation system has been verified by ground test using GPS simulator and flight test in DR mode.

해사안전을 위해 제공되고 있는 GPS 의사거리 보정정보 분석

  • 박상현;전태형;박슬기
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.410-411
    • /
    • 2022
  • 미국에서 운영하고 있는 위성항법시스템, GPS는 항해용으로 이용하고 있는 필수적 PNT 인프라이다. 이런 이유로 우리나라를 비롯해 전 세계 대다수의 국가가 해사안전 확보를 목적으로 GPS 측위정확도 향상 및 신뢰도 보장을 위해 GPS 의사거리 보정정보를 다양한 방법으로 선박에 제공하고 있다. 본 논문은 현재 제공되고 있는 GPS 의사거리 보정정보의 특성을 분석함으로써 현재 규정된 보정정보 유효기한의 적절성에 대해 알아본다. 또한 분석한 결과를 통해 GPS 의사거리 보정정보의 변화량 제공의 필요성에 대해 논하고, 관련한 최근 기술동향에 비추어 앞으로의 전망에 대해 살펴본다.

  • PDF

DGPS 장비운영 개선방안

  • Chae, Jong-Guk;Kim, Yeong-Jae;Kim, Chang-Jun;Choe, Yong-Gwon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.346-348
    • /
    • 2013
  • 전 국토를 서비스 중인 DGPS(위성항법보정시스템)는 도서벽지 설치 운영에 따른 접근성, 낙뢰 등의 기상환경 조건이 열악함에 따라 유지보수가 매우 어려운 시스템이다. 따라서, 최근 수년간 현장 정비점검 결과를 통계 분석함으로서 보다 안정적이고 체계적으로 운영이 가능할 수 있도록 DGPS 장비운영 방안을 제시하고자 한다.

  • PDF

A Study on Requirement Analysis of GNSS Ground Station System (위성항법 지상국 시스템 요구사항 분석에 관한 연구)

  • Sin, Cheon-Sik;Lee, Sang-Uk;Kim, Jae-Hun
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.1
    • /
    • pp.48-55
    • /
    • 2007
  • The system requirement definition, system configuration, major parameters for GNSS ground station development are presented in this paper. GNSS ground station system consists of the GNSS sensor station, up link station and monitoring & control system. The GNSS sensor station consists of navigation receiver subsystem which process the GPS and Galileo navigation signal, automic clock subsystem, meteorological data receiving subsystem and navigation data processing subsystem. To communicate the error correction of navigation fate, GNSS sensor station interface with GNSS Control Center.

  • PDF

Analysis on the Initialization Time of Each Mode using OmniSTAR HP (OmniSTAR HP의 측위모드별 수렴시간 분석)

  • Lee, In-Su;Park, Byung-Woon;Song, June-Sol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.75-82
    • /
    • 2011
  • In this study, author analyzed the overview and the convergence time of Fixed solutions (<15cm) of OmniSTAR, one of SBAS(Satellite Based Augmentation System) as WADGPS (Wide Area Differential GPS), which can compensate the drawbacks of the existed GNSS (Global Navigation Satellite System) that require the expensive receiver and is impossible to position in case of the radio interference in urban sometimes. As a result, the test shows that the less than 15cm 3D standard deviation converges in 39 minutes at Dynamic mode and 28 minutes at Static mode. It is expected that we can apply OmniSTAR to a variety of fields such as LBS(Location Based Service), mobile positioning, and the geo-spatial information industry that does not necessarily guarantee the high position accuracy.