• Title/Summary/Keyword: 보정연료

Search Result 66, Processing Time 0.024 seconds

Hybrid fuel Control using Fuzzy Control system (퍼지 제어 기법을 이용한 하이브리드 연료 제어)

  • Kim, Sung-Jin;Yun, Sung-Ki;Kang, Sung-Eun;Kim, Kwang-Baek;Park, Choong-Shik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.08a
    • /
    • pp.67-72
    • /
    • 2008
  • 본 논문에서는 하이브리드 차량 내부 전기모터의 등판 마력값과 회전 RPM, 흡기온도 센서의 온도 변화와 공기 및 연료의 혼합비율인 공연비에 대해 퍼지 제어 기법을 적용하여 차량의 연료 소비를 제어하는 방법을 제안한다. 제안된 기법에서는 초기 가속부분에서 등판 마력간과 회전 RPM을 퍼지제어 규칙에 의해 전기모터와 엔진의 사용비율을 제어하고, 엔진이 가동될 때 각각의 공기유입량과 연료 분사량을 이용하여 공연비 수치를 구한 후, 공연비, 흡기온도, 최종 연료 보정량에 대해 설정된 피지 소속 함수와 퍼지 추론 규칙에 따라 차량 연료를 제어한다. 시뮬레이션을 통하여 실험한 결과, 제안된 퍼지 제어 기법을 이용한 엔진 및 연료 제어 방법이 퍼지기법을 적용하지 않은 제어방법보다 평균연비가 개선되어 제안된 연료 제어 방법이 효율적임을 확인하였다.

  • PDF

Fuel Optimization for Low Earth Orbit Maintenance (최적화 기법을 이용한 초저고도 운용위성 연료량 분석)

  • Park, Yong-Jae;Park, Sang-Young;Kim, Young-Rok;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.2
    • /
    • pp.167-180
    • /
    • 2008
  • The resolution of Earth images taken from a satellite has close relation with satellite's altitude. If a satellite has lower altitude, it gets a picture having better resolution. However the satellite will be exposed to heavier air drag and will spend more fuel to maintain its altitude for a desired mission. Therefore, in this study, the required fuel to maintain very low earth orbit(LEO) with severe air drag is analyzed using optimization method such as collocation method. The required fuel to maintain the low altitude has significantly increased as the mission altitude is lowered and the solar activity is maximized. This study also shows that the fuel reduced by increasing the period of the satellite maneuver is very small, and that slightly increasing the satellite's mission altitude is much effective in reducing the amount of fuel to maintain its altitude. The calculated fuel to maintain very low earth orbit in this study would give useful information in planning the budget of fuel and cost for LEO satellites.

Horning Equipment Development of Internal Combustion Engine Fuel Pump for PUNGER & BARREL Efficiency Evaluation (내연기관 연료펌프의 PUNGER & BARREL 성능향상을 위한 HORNING 장치 및 가속화 시험모델 개발)

  • Kim, Tae-Hyeong;Cha, Ji-Hyub;Jeong, Ho-Seung;Kim, Jeong-Ryeol;Lee, Seung-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.331-332
    • /
    • 2006
  • 연료 분사펌프는 600bar 이상의 고압 연료를 분사밸브를 통하여 디젤기관의 연소실에 연속적으로 공급하는 장치이며, PLUNGER&BARREL 은 분사펌프의 핵심 부품으로 작동하고 고온 고압의 환경에서 $4{\mu}m$ 미만의 초정밀 간극을 유지해야 한다. 이러한 정밀한 가공 상태를 유지하기 위해선 내마모성 및 내열성에 적합한 재료와 열처리가 필수 요소이다. 현재 주로 사용되고 있는 방식은 DIAMOND STONE 에 의한 HORNIG 가공을 주로 사용하기 있다. 하지만, 연삭 가공과는 달리 별도의 치수 보정 장치가 없는 관계로, STONE 마모와 그에 따르는 마모량 공차에 의한 정밀 치수 확보의 어려움으로 인해, 고비용 저효율의 약점을 가지고 있다. 그러므로 기존의 HORNING STONE 방식을 대체한 PIN 방식의 HORNING MACHINE 개발을 목표로 한다.

  • PDF

Spray Characteristics of the Simplex Atomizer with Working Fluids (작동 유체에 따른 단순 압력식 연료노즐의 분무특성)

  • Choi, Chea-Hong;Lim, Byeong-Jun;Choi, Seong-Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.6
    • /
    • pp.41-47
    • /
    • 2009
  • This paper presents the spray characteristics of the simplex fuel nozzle with different working fluids for the gas turbine engine. Spray characteristics can be changed with viscosity, surface tension and density. In this research, water and test fluid type 2 which has similar characteristics of the kerosene are used as a working fluid. Spray visualization was performed by using ND-Yag laser and droplet size was measured by using PDPA(Phase doppler particle analyzer) system. The test results show that spray shapes and SMD distributions of two working fluids are similar at main spray region.

Station Collocation of Geostationary Spacecraft Via Direct Control of Relative Position (상대위치 직접 제어를 통한 정지궤도 위성의 Collocation에 관한 연구)

  • Lee, Jae-Gyu;No, Tae-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.56-64
    • /
    • 2006
  • Station collocation of closely placed multiple GEO spacecraft is required to avoid the problem of collision risk, attitude sensor interference and/or occultation. This paper presents the method of obtaining the orbit correction scheme for collocating two GEO spacecraft within a small station-keeping box. The relative motion of each spacecraft with respect to the virtual geostationary satellite is precisely expressed in terms of power and trigonometry functions. This closed-form orbit propagator is used to define the constraint conditions which meet the requirements for the station collocation. Finally, the technique of constrained optimization is used to find the orbit maneuver sequence. Nonlinear simulations are performed and their results are compared with those of the classical method.

Development of Xenon feed system for a 300 W Hall-effect Thruster (300 W급 홀 추력기를 위한 제논연료공급장치 개발)

  • Kim, Youn-Ho;Seon, Jong-Ho;Kang, Seong-Min;Wee, Jung-Hyun;Yoon, Ho-Sung;Choe, Won-Ho;Lee, Jong-Sub;Seo, Mi-Hui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.419-424
    • /
    • 2009
  • A Xenon feed system has been developed for a 300 W Hall-effect thruster intended for orbit maintenance of small satellite. The system can store about 2 kg of xenon gas at 150 bar and is capable of controlling the mass flow rate of the gas at 0.5 SCCM resolution. The performance of the system is verified with a laboratory experiment. It is confirmed that the operation of the feed system is successful at a pressure level of $1.0{\times}10^{-6}$ torr in the vacuum chamber.

Fuel Injection Control of Vehicles Using Fuzzy Control Technique (퍼지 제어 기법을 이용한 차량의 연료 제어)

  • Kim, Kwang-Baek;Woo, Young-Woon;Ha, Sang-An
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.1013-1018
    • /
    • 2007
  • In general, there are many sensors for fuel injection control such as an air flow sensor, an air intake temperature sensor, a cooling water temperature sensor, a throttle position sensor, and a motor position sensor. In this paper, we proposed a method for controlling the amount of fuel consumption in cars using fuzzy control technique by temperature change of an air intake temperature sensor and air-fuel ratio, the ratio of air and fuel mixture. In the proposed method, the amount of fuel injection is controlled by fuzzy membership functions and fuzzy inference rules established for air-fuel ratio, air intake temperature, and final fuel compensation, after computing air-fuel values using each amount of air intake and each amount of fuel injection. We verified that the proposed method is more efficient than conventional methods in fuel injection control from the results of the simulation program.

Analysis of Effect of Fuel Additive on Soot Suppression Using Laser Scattering Technique (광 산란 기술을 이용한 연료 첨가제의 그을음 억제 효과 분석)

  • Seo, Hyoungseock;Kim, Kibum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.204-210
    • /
    • 2016
  • This paper presents an experimental analysis of the growth and oxidation processes of soot particles generated in an isooctane diffusive laminar flame due to incomplete combustion. The effects of iron-based diagnostics were employed to measure the elastic scattering light from soot particles in a flame at different flame heights, and the differential scattering coefficients were calculated through a calibration process. The growth and oxidation of soot particles in flame was investigated by comparing differential scattering coefficients, and the soot volume fraction was seen to decrease in the soot oxidation process. In the same manner, the differential scattering coefficients were calculated for iron-based fuel-additive seeded flame, and these coefficients were revealed to be smaller than those obtained in the fuel-additive unseeded flame. In addition, transmission through the radial direction of the flame was measured, and transmission in the soot oxidation regime was approximately 5% higher for the seeded flame. The propensity of the data coincided well with the differential scattering coefficients, and it can be concluded that the iron component of the fuel additive plays a crucial role as a catalyst, which eventually enhanced soot particle oxidation.

NORTH/SOUTH STATION KEEPING OF GEOSTATIONARY SATELLITE USING MFT (MFT 기법을 이용한 정지위성의 남/북 위치보존)

  • 안웅영;김천휘;박봉규
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.150-157
    • /
    • 1997
  • A precise determination of the fuel efficiency is important because North/South station keeping, which controls the inclination of the geostationary orbit, consumes most of the satellie fuel. We estimate the amount of fuel required during the lifetime of the KOREASAT when MFT(Minimum Fuel Target) technique is adopted, and the result is compared to those when MCT(Maximum Compensation Target) and TBCT(Track-Back Chord Target) technique are applied. From this computation, we find that if MFT technique is adopted, the lifetime of the satellite can be extended at least 45 and 15 days, respectively, compared to those consumed with MCT and TBCT technique.

  • PDF

Fuel Concentration Measurements by Laser Rayleigh Scattering (레이저 Rayleigh 산란을 이용한 연료농도 계측시 잡음원인과 대책)

  • Kwon, Soon-Tae;Lee, Jae-Won;Park, Chan-Jun;Ohm, In-Young
    • Journal of Energy Engineering
    • /
    • v.17 no.4
    • /
    • pp.189-197
    • /
    • 2008
  • In this study, a system to measure continuously the fuel concentration in a steady flow rig on the basis of Rayleigh scattering is presented. The system can be employed to measure both the temporal and the spatial distribution. Also, it is possible to calibrate the system for the measurement of accurate absolute concentration. Firstly, the system was tested at a calibration chamber for the determination of scattering cross section from propane, butane, acetylene, Freon-12 and Genetron 143a. After this, the system was adapted to a steady flow rig to measure the temporal and spatial fuel concentration. The rig is composed of cylinder head, intake manifold, injector, and transparent cylinder which can simulate internal combustion engine. To cope with the interference of Mie scattering, which is main obstacle of the measuring concentration with Rayleigh scattering, a hardware filter was installed for reducing the number density of particles. Furthermore a software filter was developed, which is based on the rise time and the time constant of the photomultiplier-amplifier system. In addition, background noisy was reduced by adjusting the optical array and applying the pin hall and beam trap. The results show that LRS can provide useful information about concentration field and the software filter is very effective method to remove Mie interference.