• Title/Summary/Keyword: 보정기준국

Search Result 157, Processing Time 0.028 seconds

The method to improve the efficiency of DGPS operation against to GPS Jamming (GPS 재밍발생에 따른 DGPS 운영 효율성 확보방안)

  • Jeon, Gi-Jun;Choe, Yong-Gwon;Choe, Su-Bong;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.298-303
    • /
    • 2011
  • 최근 한반도의 잇따른 북한의 Jamming(교란신호)으로 인해 무선통신 기반 산업에 피해사례가 늘고 있다. 이에 국토해양부(위성항법중앙사무소)에서 운영중인 위성항법보정시스템(이하 "DGPS") 데이터 분석하였다. 그 결과 2010년도 발생한 재밍과 달리 2011년도에는 DGPS 기준국/감시국에서는 감지가 되지 않은 것으로 분석 되었으나, 피해 현황을 조사하여 이를 토대로 범국가적 대책방안(항행 백업시스템 개발, 유관기관과의 정보공유를 통한 감지 통합시스템 구축) 및 DGPS 운영 효율성 확보방안(감시국 신설, 실시간 감시프로그램 강화 등)에 대하여 제안하였다.

  • PDF

Comparison of the DGPS Positioning Accuracies for Single and Multiple Reference Stations in the South Coast of Korea (한국 남해안에서 단일 및 복수 기준국에 의한 DGPS의 측위정도 비교)

  • Park, Noh-Seon;Shin, Hyeong-Il;Lee, Dae-Jae;Shin, Hyeon-Ok;Kim, Seok-Jae;Bae, Mun-Ki
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.3
    • /
    • pp.181-189
    • /
    • 2002
  • This paper describes the positioning accuracies for single and multiple reference stations at fixed stations in Yosu harbor and Pukyong National University in the south coast of Korea from Jan. to Oct. 2001. Also we observed the change of positioning accuracy during a day and the available range of the DGPS reference station. he results obtained are main summarized as follows; 1. With single DGPS reference station, 2drms and the average positioning .error were 5.6m, 7.3m respectively. Measurement positions indicated an incline toward one way away from the actual position. 2. With multiple DGPS reference stations, 2drms and the average position error were 5.5m, 3.2m for the arithmetic mean, respectively. They were 5.3m, 3.8m for the weighted average, respectively. As far as the separation between the user and the reference station, using multiple reference stations improved position accuracy more than using single reference station. 3. The average positioning error increased between 16: 00 and 22 : 00. The average number of observed satellite and HDOP were 7.1m, 0.49 respectively. 4. Coverage of DGPS reference stations in the south coast of Korea was estimated to be 110nm. Signal strength and signal to noise ratio was not available the DGPS signal below 19㏈, 8㏈ respectively.

Signal Analysis Software for DGPS Station (DGPS 기준국 신호분석 소프트웨어)

  • Hwang, Ho-Yon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.2
    • /
    • pp.1-8
    • /
    • 2007
  • In this research, algorithm and software for the medium frequency signal analysis of DGPS(Differential Global Positioning System) station were developed. Based on new MF(Medium Frequency) algorithm, the software of NDGPS(National DGPS) signal analysis was developed for coverage analysis. Predicted MF propagation data from this software was compared to the measurement data for the verification of a developed MF algorithm. GIS(Geographic Information System) techniques including digital map with elevation data were used because MF propagation is closely related to ground conductivity, mountains, building intensity.

  • PDF

A Study on Utilization of NTRIP Data Delivery and Virtual RINEX from Seoul Metro Government Network-RTK System (서울특별시 네트워크 RTK 시스템의 NTRIP 데이터 전송 및 Virtual RINEX의 활용)

  • Gwak, In-Sun;Nam, Dae-Hyun;Kwon, Jay-Hyoun
    • Spatial Information Research
    • /
    • v.18 no.5
    • /
    • pp.1-11
    • /
    • 2010
  • Since January 2009, Seoul Metro Government(SMG) is operating own Network RTK Systems connecting four(4) GNSS Reference Stations which are installed inside Seoul Metro City area. SMG is currently providing VRS data service via wireless internet for Network-RTK and RINEX data observed from GNSS Reference Stations. This paper will discuss utilization of data available from SMG Network-RTK System for various applications, and present the test results on practicalities of Virtual RINEX data. For the utilization of data available from SMG Network- RTK system, 1)NTRIP data delivery of GNSS realtime observables streaming and converting to RINEX at receiving side, 2) monitoring deformation of bulky structures using GNSS observation were discussed. In addition to those discussion, 3) broadcasting VRS correction data for job site via radio modem after acquiring such correction data on-line using NTRIP based GNSS Internet Radio from SMG Network-RTK System were introduced. For the test results on practicalities of Virtual RINEX data, 1) the post-processing results of the GNSS observation data on a certain point with GNSS Reference Station data have been compared to the post-processing results of Virtual RINEX data on the same point generated from SMG Network-RTK System, and 2) VRS RTK positioning results for a certain point and post-processing results of Virtual RINEX data for the point were compared. The results showed only a few mm difference, and the high possibility for using Virtual RINEX data for post-processing applications.

Design and Performance Evaluation of DGPS Based on Optimal and Sub-optimal Reference Point (Optimal 및 Sub-optimal 기준점을 사용한 DGPS 설계 및 성능평가)

  • 고광섭;홍성래;정세모
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.3
    • /
    • pp.343-352
    • /
    • 1998
  • The use of DGPS enhances standalone GPS accuracy and removes common errors from two or more receivers viewing the same satellites. The design of DGPS system contains a precise reference point which is able to compute the common errors to update the pseudo range of users receivers. It should take a great time and cost to provide precise and sufficient accuracy of the reference point. That is, it is natural to measure the parameters from satellites with specific survey instrument system, and then obtain that by post processing. The purpose of the study is to examine the bounds of accuracy which resulted from RTCM correction data transmitted from a simply designed DGPS system. In the paper, We design and evaluate the DGPS system based m the surveyed reference point, and Sub-optimal no by a Standalone GPS as well. As a result of the study, it is shown that the designed system may be applied to the specific marine activity in civilian and military.

  • PDF

Dead Zone Correction for Abundance Estimation of Demersal Fish by Acoustic Method (저서어자원량의 음향추정에 있어서 해저 데드존의 보정에 관한 연구)

  • 황두진
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.3
    • /
    • pp.202-209
    • /
    • 2000
  • In order to estimate demersal fishes using acoustic echo sounders and echo integrators, we consider several problems that are accurate bottom detection, optimum bottom offset and dead zone. The dead zone where no fish detection are summed distance resolution by the half pulse length of transmitted pulse and beam angle above the seabed. This paper has considered the dead-zone correction method to be technically correct for survey of demersal fishes. A comparison between near-bottom SV profiles acquired in Funka Bay, Hokkaido, of Japan, the East China Sea and the Yellow Sea, of Korea, with before and after the bottom correction, shows that the SV obtained with after the bottom correction is 2∼3dB higher than before the bottom correction in Funka Bay, and 17dB higher in East China Sea, too.

  • PDF

Verification Test for GBAS Correction Information of KARI IMT (KARI IMT 시스템의 GBAS 보정정보 검증시험)

  • Yun, Young-Sun;Lim, Joon-Hoo;Cho, Jeong-Ho;Heo, Moon-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.153-161
    • /
    • 2011
  • Korea Aerospace Research Institute (KARI) has implemented an integrity monitor testbed (IMT) to provide archived GPS data and test results for integrity monitoring algorithm development. To verify that the system is implemented based on international standard requirements, this paper represents the basic functional verification test results of the implemented testbed as a GBAS reference station. It compares the IMT generated GBAS message fields with those of PEGASUS, which is a baseline toolset accepted by international GBAS experts, to show the validity of the correction information. It also verifies the integrity and availability of the system through analysis on GBAS user data in the range and position domain.

Development of Wave Monitoring System using Precise Point Positioning (PPP 기반 항법 알고리즘을 이용한 파고 계측시스템 설계 및 구현)

  • Song, Se Phil;Cho, Deuk Jae;Park, Sul Gee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1055-1062
    • /
    • 2015
  • A GPS based wave height meter system is proposed in this paper. The proposed system uses a dual-frequency measurements, a precise GPS satellite information and a PPP-based navigation algorithm to estimate the position with high accuracy. This method does not need to receive corrections from the reference stations. Therefore, unlike RTK based wave meter, regardless of the distance to the reference stations, it is possible to estimate position with high accuracy. This system is very simple and accurate system, but accelerometer-based system requires the other sensors such as GPS. Because position error is accumulated in the accelerometer system and must be removed periodically for high accuracy. In order to get the measurements and test the proposed wave height meter system, a buoy equipped with the test platform is installed on the sea near by Jukbyeon habor in Uljin, Korea. Then, to evaluate the performance, compares built-in commercial wave height meter with proposed system.

A Study on the Coverages of Reference Stations of the Differential Global Positioning System Using a Modified Effective Ground Conductivity in the Middle Frequency Band (수정된 유효 대지 도전율을 이용한 위성 항법 보정 시스템(DGPS) 기준국 커버리지에 관한 연구)

  • Bae, Su-Won;Kwon, Se-Woong;Lee, Woo-Sung;Moon, Hyun-Wook;Yoon, Young-Joong;Lee, Yong-An
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.5
    • /
    • pp.580-586
    • /
    • 2008
  • The prediction of a system coverage is required to install or operate a base station of the differential global positioning system(DGPS). However, the predicted results differ from the measured results when those are analyzed using ITU-R effective ground conductivity values. Thus, in this paper, the coverages of DGPS reference stations are analyzed using the modified effective ground conductivity values. The modified effective ground conductivity is based on the effective ground conductivity of ITU-R and modified to minimize the error between the measured electric fields and the predicted electric fields by using a statistical method. Then, the DGPS system coverages are analyzed by using the modified effective ground conductivity values, and the system stability is verified with a various analysis.

Comparison of Network-RTK Surveying Methods at Unified Control Stations in Incheon Area (인천지역 통합기준점에서 Network-RTK 측량기법의 비교)

  • Lee, Yong Chang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.469-479
    • /
    • 2014
  • N-RTK(Network based RTK) methods are able to improve the accuracy of GNSS positioning results through modelling of the distance-dependent error sources(i.e. primarily the ionospheric and tropospheric delays and orbit errors). In this study, the comparison of the TTFF(Time-To-Fix-First ambiguity), accuracy and discrepancies in horizontal/vertical components of N-RTK methods(VRS and FKP) with the static GNSS at 20 Unified Control Stations covering Incheon metropolitan city area during solar storms(Solar cycle 24 period) were performed. The results showed that the best method, compared with the statics GNSS survey, is the VRS, followed by the FKP, but vertical components of both VRS and FKP were approximately two times bigger than horizontal components. The reason for this is considered as the ionospheric scintillation because of irregularities in electron density, and the tropospheric scintillation because of fluctuations on the refractive index take the place. When the TTFF at each station for each technique used, VRS gave shorter initialization time than FKP. The possible reasons for this result might be the inherent differences in principles, errors in characteristics of different correction networks, interpolating errors of FKP parameters according to the non-linear variation of the dispersive and non-dispersive errors at rover when considering both domestic mobile communication infra and the standardized high-compact data format for N-RTK. Also, those test results revealed degradation of positing accuracy, long initialization time, and sudden re-initialization, but more failures to resolve ambiguity during space weather events caused by Sunspot activity and solar flares.