• Title/Summary/Keyword: 보안 평가 지표

Search Result 85, Processing Time 0.021 seconds

A Research on Network Intrusion Detection based on Discrete Preprocessing Method and Convolution Neural Network (이산화 전처리 방식 및 컨볼루션 신경망을 활용한 네트워크 침입 탐지에 대한 연구)

  • Yoo, JiHoon;Min, Byeongjun;Kim, Sangsoo;Shin, Dongil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.29-39
    • /
    • 2021
  • As damages to individuals, private sectors, and businesses increase due to newly occurring cyber attacks, the underlying network security problem has emerged as a major problem in computer systems. Therefore, NIDS using machine learning and deep learning is being studied to improve the limitations that occur in the existing Network Intrusion Detection System. In this study, a deep learning-based NIDS model study is conducted using the Convolution Neural Network (CNN) algorithm. For the image classification-based CNN algorithm learning, a discrete algorithm for continuity variables was added in the preprocessing stage used previously, and the predicted variables were expressed in a linear relationship and converted into easy-to-interpret data. Finally, the network packet processed through the above process is mapped to a square matrix structure and converted into a pixel image. For the performance evaluation of the proposed model, NSL-KDD, a representative network packet data, was used, and accuracy, precision, recall, and f1-score were used as performance indicators. As a result of the experiment, the proposed model showed the highest performance with an accuracy of 85%, and the harmonic mean (F1-Score) of the R2L class with a small number of training samples was 71%, showing very good performance compared to other models.

A Comparative Study of Machine Learning Algorithms Using LID-DS DataSet (LID-DS 데이터 세트를 사용한 기계학습 알고리즘 비교 연구)

  • Park, DaeKyeong;Ryu, KyungJoon;Shin, DongIl;Shin, DongKyoo;Park, JeongChan;Kim, JinGoog
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.3
    • /
    • pp.91-98
    • /
    • 2021
  • Today's information and communication technology is rapidly developing, the security of IT infrastructure is becoming more important, and at the same time, cyber attacks of various forms are becoming more advanced and sophisticated like intelligent persistent attacks (Advanced Persistent Threat). Early defense or prediction of increasingly sophisticated cyber attacks is extremely important, and in many cases, the analysis of network-based intrusion detection systems (NIDS) related data alone cannot prevent rapidly changing cyber attacks. Therefore, we are currently using data generated by intrusion detection systems to protect against cyber attacks described above through Host-based Intrusion Detection System (HIDS) data analysis. In this paper, we conducted a comparative study on machine learning algorithms using LID-DS (Leipzig Intrusion Detection-Data Set) host-based intrusion detection data including thread information, metadata, and buffer data missing from previously used data sets. The algorithms used were Decision Tree, Naive Bayes, MLP (Multi-Layer Perceptron), Logistic Regression, LSTM (Long Short-Term Memory model), and RNN (Recurrent Neural Network). Accuracy, accuracy, recall, F1-Score indicators and error rates were measured for evaluation. As a result, the LSTM algorithm had the highest accuracy.

The Framework of Research Network and Performance Evaluation on Personal Information Security: Social Network Analysis Perspective (개인정보보호 분야의 연구자 네트워크와 성과 평가 프레임워크: 소셜 네트워크 분석을 중심으로)

  • Kim, Minsu;Choi, Jaewon;Kim, Hyun Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.177-193
    • /
    • 2014
  • Over the past decade, there has been a rapid diffusion of electronic commerce and a rising number of interconnected networks, resulting in an escalation of security threats and privacy concerns. Electronic commerce has a built-in trade-off between the necessity of providing at least some personal information to consummate an online transaction, and the risk of negative consequences from providing such information. More recently, the frequent disclosure of private information has raised concerns about privacy and its impacts. This has motivated researchers in various fields to explore information privacy issues to address these concerns. Accordingly, the necessity for information privacy policies and technologies for collecting and storing data, and information privacy research in various fields such as medicine, computer science, business, and statistics has increased. The occurrence of various information security accidents have made finding experts in the information security field an important issue. Objective measures for finding such experts are required, as it is currently rather subjective. Based on social network analysis, this paper focused on a framework to evaluate the process of finding experts in the information security field. We collected data from the National Discovery for Science Leaders (NDSL) database, initially collecting about 2000 papers covering the period between 2005 and 2013. Outliers and the data of irrelevant papers were dropped, leaving 784 papers to test the suggested hypotheses. The co-authorship network data for co-author relationship, publisher, affiliation, and so on were analyzed using social network measures including centrality and structural hole. The results of our model estimation are as follows. With the exception of Hypothesis 3, which deals with the relationship between eigenvector centrality and performance, all of our hypotheses were supported. In line with our hypothesis, degree centrality (H1) was supported with its positive influence on the researchers' publishing performance (p<0.001). This finding indicates that as the degree of cooperation increased, the more the publishing performance of researchers increased. In addition, closeness centrality (H2) was also positively associated with researchers' publishing performance (p<0.001), suggesting that, as the efficiency of information acquisition increased, the more the researchers' publishing performance increased. This paper identified the difference in publishing performance among researchers. The analysis can be used to identify core experts and evaluate their performance in the information privacy research field. The co-authorship network for information privacy can aid in understanding the deep relationships among researchers. In addition, extracting characteristics of publishers and affiliations, this paper suggested an understanding of the social network measures and their potential for finding experts in the information privacy field. Social concerns about securing the objectivity of experts have increased, because experts in the information privacy field frequently participate in political consultation, and business education support and evaluation. In terms of practical implications, this research suggests an objective framework for experts in the information privacy field, and is useful for people who are in charge of managing research human resources. This study has some limitations, providing opportunities and suggestions for future research. Presenting the difference in information diffusion according to media and proximity presents difficulties for the generalization of the theory due to the small sample size. Therefore, further studies could consider an increased sample size and media diversity, the difference in information diffusion according to the media type, and information proximity could be explored in more detail. Moreover, previous network research has commonly observed a causal relationship between the independent and dependent variable (Kadushin, 2012). In this study, degree centrality as an independent variable might have causal relationship with performance as a dependent variable. However, in the case of network analysis research, network indices could be computed after the network relationship is created. An annual analysis could help mitigate this limitation.

Abnormal Water Temperature Prediction Model Near the Korean Peninsula Using LSTM (LSTM을 이용한 한반도 근해 이상수온 예측모델)

  • Choi, Hey Min;Kim, Min-Kyu;Yang, Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.265-282
    • /
    • 2022
  • Sea surface temperature (SST) is a factor that greatly influences ocean circulation and ecosystems in the Earth system. As global warming causes changes in the SST near the Korean Peninsula, abnormal water temperature phenomena (high water temperature, low water temperature) occurs, causing continuous damage to the marine ecosystem and the fishery industry. Therefore, this study proposes a methodology to predict the SST near the Korean Peninsula and prevent damage by predicting abnormal water temperature phenomena. The study area was set near the Korean Peninsula, and ERA5 data from the European Center for Medium-Range Weather Forecasts (ECMWF) was used to utilize SST data at the same time period. As a research method, Long Short-Term Memory (LSTM) algorithm specialized for time series data prediction among deep learning models was used in consideration of the time series characteristics of SST data. The prediction model predicts the SST near the Korean Peninsula after 1- to 7-days and predicts the high water temperature or low water temperature phenomenon. To evaluate the accuracy of SST prediction, Coefficient of determination (R2), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE) indicators were used. The summer (JAS) 1-day prediction result of the prediction model, R2=0.996, RMSE=0.119℃, MAPE=0.352% and the winter (JFM) 1-day prediction result is R2=0.999, RMSE=0.063℃, MAPE=0.646%. Using the predicted SST, the accuracy of abnormal sea surface temperature prediction was evaluated with an F1 Score (F1 Score=0.98 for high water temperature prediction in summer (2021/08/05), F1 Score=1.0 for low water temperature prediction in winter (2021/02/19)). As the prediction period increased, the prediction model showed a tendency to underestimate the SST, which also reduced the accuracy of the abnormal water temperature prediction. Therefore, it is judged that it is necessary to analyze the cause of underestimation of the predictive model in the future and study to improve the prediction accuracy.

An Improved Online Algorithm to Minimize Total Error of the Imprecise Tasks with 0/1 Constraint (0/1 제약조건을 갖는 부정확한 태스크들의 총오류를 최소화시키기 위한 개선된 온라인 알고리즘)

  • Song, Gi-Hyeon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.10
    • /
    • pp.493-501
    • /
    • 2007
  • The imprecise real-time system provides flexibility in scheduling time-critical tasks. Most scheduling problems of satisfying both 0/1 constraint and timing constraints, while the total error is minimized, are NP-complete when the optional tasks have arbitrary processing times. Liu suggested a reasonable strategy of scheduling tasks with the 0/1 constraint on uniprocessors for minimizing the total error. Song et at suggested a reasonable strategy of scheduling tasks with the 0/1 constraint on multiprocessors for minimizing the total error. But, these algorithms are all off-line algorithms. In the online scheduling, the NORA algorithm can find a schedule with the minimum total error for the imprecise online task system. In NORA algorithm, EDF strategy is adopted in the optional scheduling. On the other hand, for the task system with 0/1 constraint, EDF_Scheduling may not be optimal in the sense that the total error is minimized. Furthermore, when the optional tasks are scheduled in the ascending order of their required processing times, NORA algorithm which EDF strategy is adopted may not produce minimum total error. Therefore, in this paper, an online algorithm is proposed to minimize total error for the imprecise task system with 0/1 constraint. Then, to compare the performance between the proposed algorithm and NORA algorithm, a series of experiments are performed. As a conseqence of the performance comparison between two algorithms, it has been concluded that the proposed algorithm can produce similar total error to NORA algorithm when the optional tasks are scheduled in the random order of their required processing times but, the proposed algorithm can produce less total error than NORA algorithm especially when the optional tasks are scheduled in the ascending order of their required processing times.