• Title/Summary/Keyword: 보실험

Search Result 15,283, Processing Time 0.043 seconds

A Damage Measurement of Steel Beam using PZT Sensor (PZT센서를 이용한 철골보 손상계측)

  • Seo, Hye-Won;Park, Min-Suk;Lee, Swoo-Heon;Shin, Kyung-Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.477-485
    • /
    • 2010
  • Various monitoring sensors are used to predict and detect structural damage. Smart sensors, such as glass-fiber sensors, PZT, and MEMS, among others, have replaced traditional sensors. They are now being used in many areas. This study aims to predict the damage by measuring the PZT voltage attached on the specimen by the applied impact load. In the experiment to detect damages in beam connection, simple $H-400{\times}200{\times}8{\times}13$ beams were spliced with bolts. The results of FFT between PZT sensor and accelrometer were compared to measure the sensitivity of the PZT sensor. The damage to the beam was presumed by loosening the bolt, and then the damage measurement was accompanied. Secondly, a steel $PL600{\times}65{\times}5.8$ plate beam was fabricated for the purpose of experimenting on damage measurement. Impact loading test on three different locations was carried out. Damage width varied between 6~42mm on both sides by cutting, using a steel saw. The ratio of frequencies before and after the damage was computed to quantify the damage level by using FFT, and the change in mode pattern with the increased damage was investigated to measure the damage.

Classification Schemes of Precast Beam-Column Connections According to Contribution of Deformation Components (변형기여분에 따른 프리캐스트 보-기둥 접합부의 분류방안)

  • Choi, Hyun-Ki;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.545-553
    • /
    • 2014
  • This study suggested an integrated classification method for generalized characteristics of PC beam-column connection according to connection details. Quantifying the failure mode of PC-beam column connection and characteristics of corresponding details, this study suggested to use deformation contribution of each element of beam-column assemblage. According to the expected failure mode of beam-column connection assemblage, PC beam-column connection can be classified into 'equivalent monolithic system' and 'jointed system'. In this study, four test specimens were tested for verification of detailed classification method of PC beam-column connections. Test was carried out with typical beam-column connection test method. Load was applied at the top of test specimen and end of beams were restrained by hinge. In order to verify the deformation contribution of each test specimen, 34-LVDTs were mounted on test specimen. According to test results, deformation contribution of each test specimen have different characteristics. Deformation characteristics of joint and other components which are quantified by test results, equivalent monolithic system can be classified into two categories. Strong connection have extremely small deformation contribution of joint and much larger deformation contribution was shown in flexural behavior of beam. The other type of beam-column connection is ductile connection which allows the larger deformation in joint area compared with strong connection.

An Evaluation of Flexural Performance of Composite Beam with Ultra High Performance Concrete Deck and Inverted T-Shaped Steel Girder (초고강도 콘크리트 바닥판과 역T형 강재 합성보의 휨 성능 평가)

  • Yoo, Sung-Won;Joh, Chang-Bin;Choi, Kwang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.64-71
    • /
    • 2016
  • In this paper, when the composite beam is made with UHPC deck and steel girder, the steel girder takes the form of the inverted-T shape without top flange because of high strength and stiffness of UHPC deck. There is no evaluation by experiment and analysis about the shear connector behavior on the web of steel girder and flexural behavior of inverted-T shape composite beam. By this reason, this study compares between experiment and analysis by using tension softening model of UHPC on the basis of flexural test results of 16 members considering compressive strength of UHPC, spacing of stud and thickness of deck as variables. The results of tensile strength of UHPC by inverse analysis were 6.57 MPa(in case of 120 MPa) and 9.57 MPa(in case of 150 MPa). In case of the test members with small stud spacing, the results of analysis and test were close clearly, and the test members with thick deck and low UHPC compressive strength also similar, but effects were small. As it compared between analysis and experiment totally, the results of analysis and experiment agree well. So the tension softening model of UHPC is reasonably reflected on the real behavior of composite beam of UHPC.

Inelastic Behavior of H-Shaped Beams with Web Openings under Cyclic Loading (반복하중을 받는 유공 H-형강 보의 소성 거동)

  • Lee, E.T.
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.513-524
    • /
    • 2001
  • A total of nine H-shaped beams with web openings under cyclic loading condition were investigated. The dimension criteria are based on the formulae proposed by Darwin. The suitability of existing design formulae the effects of plastic hinge on beams with web openings the fracture around the web openings and the influence of cracks neighboring web openings to the beam strength under cyclic loading were also investigated through the observation of the behavior of these beams with various opening dimensions. locations numbers and spacing between the two openings.

  • PDF

Test of SRC Column-to-Composite Beam Connection under Gravity Loading (중력하중을 받는 SRC기둥-합성보 접합부 실험)

  • Kim, Young Ju;Bae, Jae Hoon;Ahn, Tae Sang;Jang, Seong Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.441-452
    • /
    • 2014
  • In this paper, steel reinforced concrete(SRC) column and composite beam connections were statically tested under gravity loading. The composite beam consists of H-section and U-section members. Five full-scaled specimens were designed to investigate the effect of a number of parameters on behavior of connections such as H-section size, the presence of stud connector, the presence of stiffeners and top bars. In addition, structural performance of welded joint between the H-section and the U-section members is mainly discussed, with an emphasis on initial stiffness, strength, deformation capacity.

Behavior of CFT Column to H-Beam Full-Scale Connections with External T-Stiffeners (T-스티프너 보강 CFT 기둥 - H형강보 실대형 접합부의 거동)

  • Kim, Young Ju;Kang, Chang Hoon;Shin, Kyung Jae;Oh, Young Suk;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.715-723
    • /
    • 2001
  • This paper represents the behavior of CFT column to H-beam full-scale connection with external T-stiffener. 6 specimens whose T-stiffeners which are compounded of vertical element and horizontal element were made under the parameter of the strength ratio of each elements(vertical element and horizontal element in T-stiffener) to the beam full plastic moment. The analysis-parameters demonstrated in the base of the data that we get in experiment are strength stiffness, and plastic rotational capacity. All of specimen showed stable hysteretic behavior, and the horizontal element is more critical than vertical element in strength and stiffness. The mean beam plastic rotation of all specimen except the TS-2 specimen is 2.97% rad.

  • PDF

Experimental Study of Concrete Beam with FRP Plank as Formwork and Reinforcement (FRP 판을 거푸집 및 보강재로 활용한 콘크리트 보의 실험적 연구)

  • Yoo, Seung-Woon;Bae, Han-Ug;Oliva, Michael;Bank, Lawrence
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.67-74
    • /
    • 2007
  • We perform an experimental study of concrete beam with pultruded fiber reinforced polymer(FRP) plank using as a permanent formwork and the tensile reinforcement. A satisfactory bond at the interface between the smooth surface of the pultruded plank and the concrete must be developed for the FRP plank and the concrete to act as a composite structural member. Two kinds of aggregate were bonded to the FRP plank using a commercially available epoxy. No additional flexural or shear reinforcement was provided in the beams. For comparison we test two types of control specimen. One control did not have any aggregate bonded to the FRP plank and the other control had infernal steel reinforcing bars instead of the FRP plank. The beams were loaded by central patch load to their ultimate capacity. The experimental results were compared to current ACI 318 (2005) and ACI 440 (2006) code predictions. This study demonstrates that the FRP plank has the potential to serve as formwork and reinforcing for concrete structures.

Push-out Test on Welded Angle Shear Connectors used in Composite Beams (합성보에 적용된 앵글 전단연결재의 Push-out 실험)

  • Kim, Young Ju;Bae, Jae Hoon;Ahn, Tae Sang;Jang, Dong Woon
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.155-167
    • /
    • 2014
  • Steel-concrete composite beam has been used for a considerable time in building construction. An essential component of a composite beam is the shear connection between the steel section and the concrete slabs, which is provided by mechanical shear connectors. A variety of shapes and devices have been in use as shear connectors. This study summarizes the results of an experimental investigation involving the testing of push-out specimens with angle shear connectors. All of 22 push-out specimens were designed to study the effect of a number of parameters on the shear capacity of angle shear connectors such as the height of the angle connector, the length of welding, and the pitch of angles. Based on the test results, a design equation was developed for predicting the shear strength of angle shear connectors.

Seismic Performance Evaluation of Beam-Column Connection for Panel Zone Strength (패널존의 강도비에 따른 기둥-보 접합부의 내진성능 평가)

  • Kim, Sung-Young;Shin, Chang-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.1 s.24
    • /
    • pp.11-20
    • /
    • 2007
  • The study proposes the method to cancel the scallop to avoid fracture of the circumstance of the scallop at H shape column-to-beam connection and reinforce at beam flange two faces with the cover plates and rib. A total of four specimens were tested to enhance seismic performance of building structure by reducing the frequency of stress concentration and preventing the brittle fracture of scallop. For this purpose, four full-scale test specimens were made and loaded with quasi-static reversed cyclic loading. The main analytical parameters are panel-zone-strength ratio, yield strengths, initial stiffness, total plastic rotation, contribution of each element to total plastic rotation and energy dissipation capability. For the specimens tested under repeated loading, the experimental result was satisfied with seismic performance requirement as the Special Moment Frames (SMF). The analysis results show that all of the test specimens were found to have good performance to 4% story drift and satisfied the criteria for the plastic roation capacity of SMFs that is 0.03 rad. according to the 1997 AISC seismic provision.

Seismic Behavior of H shaped Beam to Square Column Connection with Outer Diaphragm Using Field Welding (외측 다이아프램을 사용한 현장 용접형 각형강관기둥-H형강보 접합부의 이력거동)

  • Seo, Seong Yeon;Jung, Jin Ahn;Choi, Sung Mo;Kim, Sung Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.459-467
    • /
    • 2005
  • This study focuses on the development of a new method of H-shaped beam-to-square column connection with an outer diaphragm and a field welding. The specific type of beam-to-column connection with an external stiffener, using field welding, is proposed. The structural behavior of this connection was examined experimentally. Two loading type tests were conducted under the experimental parameters given as details. First described was the symmetrical loading test, which supported both ends or a beam simply and applied a load from the column to the pend (What does this mean?) to investigate a fundamental characteristic of this connection. Further described was the anti-symmetrical loading test, which carried out simple support of the column'stop end and the column base, and applied a load from both ends of a beam to investigate the structural performance of this connection. From the results, it is clear that the external- stiffener-type connection proposed in this paper is the reliable connection method.