• Title/Summary/Keyword: 보수공법

Search Result 385, Processing Time 0.031 seconds

A Study on the Development of an Automated Pavement Crack Sealer (도로면 크랙 실링 자동화 장비 개발에 관한 연구)

  • Lee Jeong-Ho;Lee Jae-Kwon;Kim Min-Jae;Kim Young-Suk;Cho Moon-Young;Lee Jun-bok
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.539-542
    • /
    • 2002
  • Crack sealing is a maintenance procedure that is commonly used to reduce pavement degradation. If cracks in pavements are not sealed, surface water penetration can reduce the strength of the sub-base layers, which can result in increased deflections of the pavement. Reduced strength of the sub-base also accelerates the deterioration of the surface, due to development of greater cracking and potholes. Crack sealing is performed to reduce water and debris penetration, thereby helping to maintain pavement structural capacity and limiting future degradation. The process of sealing cracks in pavements is however dangerous, costly, and labor-intensive operation. Labor turnover and training are increasing problems related to crack sealing crews, and as traffic volumes increase. Automating crack sealing can reduce labor and road user costs, improve work quality, and decrease worker exposure to roadway hazards. The main objective of this research is to develop an automated system for sealing cracks in pavement. Extension of the algorithms and tools presented in this research is also recommended for future study.

  • PDF

A Study on the Development of an Automated Pavement Crack Sealer (도로면 크랙실링 자동화 로봇의 프로토타입 개발에 관한 연구)

  • Lee Jeong-Ho;Yu Hyun-Seok;Kim Young-Suk;Lee Jun-Bok;Cho Moon-Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.2 s.18
    • /
    • pp.162-171
    • /
    • 2004
  • Crack sealing is a maintenance procedure that is commonly used to reduce pavement degradation. If cracks in pavements are not sealed, surface water penetration can reduce the strength of the sub-base layers, which can result in increased deflections of the pavement. Reduced strength of the sub-base also accelerates the deterioration of the surface, due to development of greater cracking and potholes. Crack sealing is performed to reduce water and debris penetration, thereby helping to maintain pavement structural capacity and limiting future degradation. The process of sealing cracks in pavements is however dangerous, costly, and labor-intensive operation. Labor turnover and training are increasing problems related to crack sealing crews, and as traffic volumes increase. Automating crack sealing can reduce labor and road user costs, improve work quality, and decrease worker exposure to roadway hazards. The main objective of this research is to develop an automated system for sealing cracks in pavement. Extension of the algorithms and tools presented in this research is also recommended for future study.

A Study on the Field Application of Epoxy Impregnation Method Using Elastic Storage Tube (탄성저장관을 활용한 에폭시 주입공법의 현장 적용성에 관한 연구)

  • Kim, Chun-Ho;Lee, Ho-Jin;Kim, Kyoung-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.72-80
    • /
    • 2018
  • In this research, we tried to investigate the influence of concrete on cracks after applying to the actual construction site using the TPS construction method which can be easily charged by the mechanical injection method. To summarize the results, the following It is as follows. First, in the case of ultrasonic velocity, it can be seen that the ultrasonic wave passes rapidly at an average of about 36 mm / sec as compared with the syringe method when using the TPS method, and in the case of the injection depth, the syringe method In the case of TPS construction method, it showed an excellent tendency that 100% of the water retentive material was charged with all the formulations under a strong injection pressure. In the case of compressive strength, it was shown that the average was increased by 16.8% at the time of using the TPS construction method, and it was found to be structurally superior. Taken together, it is possible to confirm the behavior of the crack repairing agent by improving the quality by improving the strength and confirming the window installation by filling the injection material into the closed space at the crack site when using the TPS method compared with the syringe method. In addition, it is expected that construction time will be improved by shortening the construction period of about 5 days for the TPS construction method construction section 532 m, and usability will be expanded by the crack repair method of concrete structure.