• Title/Summary/Keyword: 보론

Search Result 231, Processing Time 0.027 seconds

Effect of Boron Carbide on the Morphology of SiC Conversion Layer of Graphite Substrate formed by Chemical Vapor Reaction (화학기상반응으로 흑연 위에 만든 SiC 반응층의 모양에 미치는 보론 카바이드의 영향)

  • Hong, Hyun-Jung;Riu, Doh-Hyung;Cho, Kwang-Youn;Kong, Eun-Bae;Shin, Dong-Geun;Shin, Dae-Kyu;Lee, Jae-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.8
    • /
    • pp.445-450
    • /
    • 2007
  • A conversion layer of SiC was fabricated on the graphite substrate by a chemical vapor reaction method in order to enhance the oxidation resistance of graphite. The effect of boron carbide containing powder bed on the morphology of SiC conversion layer was investigated during the chemical vapor reaction of graphite with the reactive silicon-source at $1650^{\circ}C\;and\;1700^{\circ}C$ for 1 h. The presence of boron species enhanced the conversion of graphite into SiC, and altered the morphology of the conversion layer significantly as well. A continuous and thick SiC conversion layer was formed only when the boron source was used with the other silicon compounds. The boron is deemed to increase the diffusion of SiOx in SiC/C system.

Construction of Vehicle Door Impact Beam Using Hot Stamping Technology (핫스탬핑에 의한 자동차 도어 임팩트빔의 개발)

  • Lee, Hyun-Woo;Hwang, Jung-Bok;Kim, Sun-Ung;Kim, Won-Hyuck;Yoo, Seung-Jo;Lim, Hyun-Woo;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.797-803
    • /
    • 2010
  • A vehicle door impact beam made of a thin sheet of steel has been constructed using hot stamping technology with the aim of ensuring occupant safety in the event of a side collision. This technology has been used to increase the strength of the vehicle body parts and to reduce the weight of the door impact beam as well as the number of work processes. Mechanical tests were performed to determine the material properties of the hot-stamped specimen and the results of the tests were used as input data in stamping and structural simulation in order to obtain the optimal design of door impact beam. The strength of the hot-stamped door impact beam increased to a value that was 102% higher than that of conventional pipe-shaped door impact beam. A weight reduction of 34% was also achieved.

The studies on synthesis of aluminum oxide and boron oxide co-doped zinc oxide(AZOB) powder by spray pyrolysis (분무열분해법(Spray Pyrolysis)에 의한 알루미늄 산화물과 보론 산화물이 함께 도핑된 산화아연(AZOB: $Al_2O_3$ and $B_2O_3$ Co-doped Zinc Oxide)의 분말 제조에 대한 연구)

  • Kim, Sang Hern
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.731-739
    • /
    • 2014
  • Aluminum and boron co-doped zinc-oxide(AZOB) powders as transparent conducting oxide(TCO) were prepared by spray pyrolysis at $900^{\circ}C$. The micron-sized AZOB particles were prepared by spray pyrolysis from aqueous precursor solutions for aluminium, boron, and zinc. The micron-sized AZOB particle after the spray pyrloysis underwent post-heat treatment at $700^{\circ}C$ for 2 hours and it was changed fully to nano-sized AZOB particle by ball milling for 24 hours. The size of primary AZOB particle by Debye-Scherrer Equation and surface resistance of AZOB pellet were measured.

Refinement of Crystalline Boron and the Superconducting Properties of $MgB_2$ by Attrition Ball Milling (어트리션 볼 밀링에 의한 보론 분말의 미세화 및 $MgB_2$의 초전도특성)

  • Lee, J.H.;Shin, S.Y.;Jun, B.H.;Kim, C.J.;Park, H.W.
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.23-28
    • /
    • 2008
  • We report refinement of crystalline boron by an attrition ball milling system and the superconducting properties of the $MgB_2$ pellets prepared from the refined boron. In this work, we have conducted the ball milling with only crystalline boron powder, in order to improve homogeneity and control the grain size of the $MgB_2$ that is formed from it. We observed that the crystalline responses in the ball-milled boron became broader and weaker when the ball-milling time was further increased. On the other hand, the $B_{2}O_{3}$ peak became stronger in the powders, resulting in an increase in the amount of MgO within the $MgB_2$ volume. The main reason for this is a greater oxygen uptake. From the perspective of the superconducting properties, however, the sample prepared from boron that was ball milled for 5 hours showed an improvement of critical current density ($J_c$), even with increased MgO phase, under an external magnetic field at 5 and 20 K.

  • PDF

Effect of Coating Thickness on Microstructures and Tensile Properties in Yb:YAG Disk Laser Welds of Al-Si Coated Boron Steel (Al-Si 용융 도금된 보론강의 Yb:YAG 디스크 레이저 용접부의 미세조직과 인장성질에 미치는 도금두께의 영향)

  • Cao, Wei-Ye;Kong, Jong-Pan;Ahn, Yong-Nam;Kim, Cheol-Hee;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.66-75
    • /
    • 2013
  • In this study, the effect of coating thickness($20{\mu}m$ and $30{\mu}m$) on microstructure and tensile properties in Yb:YAG disk laser welds of Al-Si-coated boron steel (1.2mmt) was investigated. In the case of as welds, the quantity of ferrite was found to be higher in base metal than that in HAZ (Heat Affected Zone) and fusion zone, indicating, fracture occurrs in base metal, and the fracture position is unrelated to the coating thickness. Furthermore, yield strength, tensile strength of base metal and welded specimens showed similar behavior whereas elongation was decreased. On the other hand, base metal and HAZ showed existence of martensite after heat treatment, the fusion zone indicated the presence of full ferrite or austenite and ferrite during heat treatment ($900^{\circ}C$, 5min), After water cooling, austenite was transformed to martensite, and the quantity of ferrite in fusion zone was higher as compared with in base metal, resulting in sharply decrease of yield strength, tensile strength and elongation, which leads to fracture occured at fusion zone. In particular, results showed that because the concentration of Al was higher in 30um coating layer specimen than that of 20um coating specimen, after heat treatment, producing a higher quantity of ferrite was higher after heat treatment in the fusion zone; howevers, it leads to a lower tensile property.

Effects of Serrated Grain Boundary Structures on Boron Enrichment and Liquation Cracking Behavior in the Simulated Weld Heat-Affected Zone of a Ni-Based Superalloy (니켈기 초내열합금의 파형 결정립계 구조가 보론 편석과 재현 열영향부 액화균열거동에 미치는 영향)

  • Hong, Hyun-Uk;Choi, June-Woo;Bae, Sang-Hyun;Yoon, Joong-Geun;Kim, In-Soo;Choi, Baig-Gyu;Kim, Dong-Jin;Jo, Chang-Yong
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.31-38
    • /
    • 2013
  • The transition of serrated grain boundary and its effect on liquation behavior in the simulated weld heat-affected zone (HAZ) have been investigated in a wrought Ni-based superalloy Alloy 263. Recently, the present authors have found that grain boundary serration occurs in the absence of adjacent coarse ${\gamma}^{\prime}$ particles or $M_{23}C_6$ carbides when a specimen is direct-aged with a combination of slow cooling from solution treatment temperature to aging temperature. The present study was initiated to determine the interdependence of the serration and HAZ property with a consideration of this serration as a potential for the use of a hot-cracking resistant microstructure. A crystallographic study indicated that the serration led to a change in grain boundary character as special boundary with a lower interfacial energy as those terminated by low-index {111} boundary planes. It was found that the serrated grain boundaries are highly resistant to boron enrichment, and suppress effectively grain coarsening in HAZ. Furthermore, the serrated grain boundaries showed a higher resistance to susceptibility of liquation cracking. These results was discussed in terms of a significant decrease in interfacial energy of grain boundary by the serration.

Alignment and lattice quality of hexagonal rings of hexagonal BN films synthesized by ion beam assisted deposition (이온빔보조증착법으로 합성한 hexagonal BN막의 hexagonal ring의 배열과 결정성)

  • 박영준;한준희;이정용;백영준
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.1
    • /
    • pp.43-50
    • /
    • 1999
  • We have studied the alignment and the lattice quality of hexagonal rings of h-BN films synthesized by ion beam assisted deposition (IBAD) method. Boron was e-beam evaporated at 1.5 $\AA$/sec and nitrogen gas was ionized using end-hall type ion gun at 60, 80, and 100 eV, respectively. Substrate was either not heated or heated at 200, 400, 500, and $800^{\circ}C$, respectively. As nitrogen ion energy increases, c-axes of hexagonal rings tend to align parallel to the substrate, which is explained by larger compressive stress at higher ion energies. Alignment of c-axis increases with temperature and shows maximum around $400^{\circ}C$. The lattice quality of hexagonal rings improves with temperature. Such behaviors can be understood from two counter trends of increasing the atomic mobility and decreasing compressive stress with temperature. Hardness of h-BN films shows the same trend with the alignment of c-axis. Ion beam assisted deposition method seems to be effective for aligning hexagonal rings and optimizing h-BN properties.

  • PDF

Effect of Boron on the Manufacturing Properties of Ti-2Al-9.2Mo-2Fe Alloy (Ti-2Al-9.2Mo-2Fe 합금의 후공정 특성에 미치는 보론의 영향)

  • Kim, Tae-Yong;Lim, Ka-Ram;Lee, Yong-Tai;Cho, Kyung-Mok;Lee, Dong-Geun
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.636-641
    • /
    • 2015
  • Titanium has many special characteristics such as specific high strength, low elastic modulus, excellent corrosion and oxidation resistance, etc. Beta titanium alloys, because of their good formability and strength, are used for jet engines, and as turbine blades in the automobile and aerospace industries. Low cost beta titanium alloys were developed to take economic advantage of the use of low-cost beta stabilizers such as Mo, Fe, and Cr. Generally, adding a trace of boron leads to grain refinement in casted titanium alloys due to the pinning effect of the TiB phases. This study analyzed and evaluated the microstructural and mechanical properties after plastic deformation and heat treatment in boron-modified Ti-2Al-9.2Mo-2Fe alloy. The results indicate that a trace of boron addition made grains finer; this refinement effect was found to be maintained after subsequent processes such as hot forging and solution treatment. This can effectively reduce the number of required manufacturing process steps and lead to savings in the overall cost as well as low-cost beta elements.

Fabrication of Boron-Doped Activated Carbon for Zinc-Ion Hybrid Supercapacitors (아연-이온 하이브리드 슈퍼커패시터를 위한 보론 도핑된 활성탄의 제조)

  • Lee, Young-Geun;Jang, Haenam;An, Geon-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.30 no.9
    • /
    • pp.458-464
    • /
    • 2020
  • Zinc-ion hybrid supercapacitors (ZICs) have recently been spotlighted as energy storage devices due to their high energy and high power densities. However, despite these merits, ZICs face many challenges related to their cathode materials, activated carbon (AC). AC as a cathode material has restrictive electrical conductivity, which leads to low capacity and lifetime at high current densities. To overcome this demerit, a novel boron (B) doped AC is suggested herein with improved electrical conductivity thanks to B-doping effect. Especially, in order to optimize B-doped AC, amounts of precursors are regulated. The optimized B-doped AC electrode shows a good charge-transfer process and superior electrochemical performance, including high specific capacity of 157.4 mAh g-1 at current density of 0.5 A g-1, high-rate performance with 66.6 mAh g-1 at a current density of 10 A g-1, and remarkable, ultrafast cycling stability (90.7 % after 10,000 cycles at a current density of 5 A g-1). The superior energy storage performance is attributed to the B-doping effect, which leads to an excellent charge-transfer process of the AC cathode. Thus, our strategy can provide a rational design for ultrafast cycling stability of next-generation supercapacitors in the near future.

A Study on Synthesis and Characterization of TiZrB$_2$ Composite by SHS Microwave (SHS 마이크로파에 의한 TiZrB$_2$ 복합재료의 합성 및 특성연구)

  • 이형복;윤영진;오유근;안주삼
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.7-14
    • /
    • 1999
  • TiZrB2 solid solution was synthesized using fine powders of Ti, Zr and B by SHS microwave process. The characterization of the synthesized powder and sintered bodies ws investigated. The combustion temperature and rate were increased with increasing the mole ratio of Zr in temperature profile, and showed the maximum combustion temperature and velocity values of 285$0^{\circ}C$ and 14.6mm/sec in Ti0.2Zr0.8B2 composition. Phase separation has been occured into a composite with TiB2 and ZrB2 phases from TiZrB2 solid solution, which was hot pressed sintering at 30 MPa for an hour at 190$0^{\circ}C$. At the composition of Ti0.8Zr0.2B2 the best properties has been obtained in relative density, bending strength, fracture toughness and hardness, with 99%, 680 MPa, 7.3MPa.m1/2 and 2750 Kg/$\textrm{mm}^2$ respectively.

  • PDF