• Title/Summary/Keyword: 보도폭

Search Result 38, Processing Time 0.021 seconds

A Study on Root Damage to Street Pavement from the Roots of Roadside Trees in Urban Areas - Focusing on Roadside Trees in Seo-gu, Daejeon City - (도심 가로수 뿌리의 융기특성 연구 - 대전 서구 가로수를 대상으로 -)

  • Tak, Seong-Cheol;Lee, Shiyoung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.3
    • /
    • pp.58-69
    • /
    • 2018
  • This study investigated root damage characteristics and correlations between roadside trees and street furniture through the investigation of the root damage conditions and the current status of roadside trees and street furniture in Seo-gu, Daejeon City where the occurrence of pavement uplift is frequent. The study area was divided into six areas by species of trees as Metasequoia glyptostroboides and Platanus occidentalis focusing on the streets that were installed with trees chest height and 8cm round planted at the time of the development of the Dunsan-dong Housing Site Development in Seo-gu, Daejeon metropolitan city (1990~1994). The damage rate of roadside protection frames (95.3%) was higher than that of curbstones (19.7%) at the study site. Streets without a protective frame were more likely to have damaged pavement. In addition, the frequency of breakage of protective frames was lowered when a drinking water area was increased to more than a certain level. The frequency of the type of uplift in the sidewalk pavement surfaces is in the order of tail type > mounding type > irregular type, and the frequency of the uplift direction is the highest in Direction 1 ($0{\sim}44^{\circ}C$), Direction 2 ($45{\sim}89^{\circ}$), and Direction 3 ($95{\sim}134^{\circ}$) when $180^{\circ}$ of the street direction is based on $90^{\circ}$ parallel to the curbstone. The uplift length is about 31~60cm and it is most often at a height of 3~6cm. When comparing the results of uplift deformation, Metasequoia glyptostroboides was found to be higher than the deformation of Platanus occidentalis. In addition, it can be seen that the larger the length, width and height of the ridge, the larger the deformation becomes. The relationship between the diameter at breast height, the dimension of the pavement width, the frequency of the ridge phenomenon and the deformation amount is not necessarily proportional, and there seems to be a gap due to external factors such as soil humidity and planting base. Therefore there is a need for a multi-directional approach in reducing uplift.

Study on the Impact of Roadside Forests on Particulate Matter between Road and Public Openspace in front of Building Site - Case of Openspace of Busan City hall in Korea - (도심 도로변 가로녹지가 주변 오픈스페이스의 미세먼지농도에 미치는 영향 연구 - 부산시청 광장을 대상으로 -)

  • Hong, Suk-Hwan;Kang, Rae-Yeol;An, Mi-Yeon;Kim, Ji-Suk;Jung, Eun-Sang
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.3
    • /
    • pp.323-331
    • /
    • 2018
  • This study was conducted to examine the effects of constructing streetside urban forests on particulate matter (PM) content in pedestrian paths and open spaces created between the main streets and buildings in a high-rise, high-density urban area. The study site is a 70m-wide open space between Busan City Hall and Jungang-street in Busan, Korea. The results showed that the density of PM differences between the open space and the adjacent main street were small in regions without linear trees and shrub rows during both the weekdays and weekend. On the other hand, the areas with linear trees and shrub rows were found to have significantly higher concentrations of PM compared to the roadway. In particular, sections with linear trees and shrub rows had higher PM levels both on roads and in adjacent open space, indicating that the composition of linear trees and shrub rows increased the concentration of PM in the off-street open space in areas with wide space between the roadway and building. The impact was more significant in the open space than the roadway. This phenomenon can be explained by the fact that PM generated by vehicles flows through the roadside shrubs by rapid wind flow but does not disperse widely in the pedestrian paths where the wind flow was reduced. In this study, we found that the roadside tree and shrub walls slowed the flow of wind, causing vehicle-emitted PM to accumulate if a wide open space was created between the road and building, resulting in higher concentration of PM in the open space. We confirmed that the distance between the road and building was a critical factor for constructing linear trees and shrub rows to reduce PM generated by vehicle traffic.

Developing the Traffic Accident Prediction Model using Classification And Regression Tree Analysis (CART분석을 이용한 교통사고예측모형의 개발)

  • Lee, Jae-Myung;Kim, Tae-Ho;Lee, Yong-Taeck;Won, Jai-Mu
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.31-39
    • /
    • 2008
  • Preventing the traffic accident by accurately predicting it in advance can greatly improve road traffic safety. The accurate traffic accident prediction model requires not only understanding of the factors that cause the accident but also having the transferability of the model. So, this paper suggest the traffic accident diagram using CART(Classification And Regression Tree) analysis, developed Model is compared with the existing accident prediction models in order to test the goodness of fit. The results of this study are summarized below. First, traffic accident prediction model using CART analysis is developed. Second, distance(D), pedestrian shoulder(m) and traffic volume among the geometrical factors are the most influential to the traffic accident. Third. CART analysis model show high predictability in comparative analysis between models. This study suggest the basic ideas to evaluate the investment priority for the road design and improvement projects of the traffic accident blackspots.

  • PDF

A Study of the Intersection in Reduce Car Accidents for Traffic Signal Light to Supplement (교차로 사고 감소를 위한 신호등 보완에 관한 연구)

  • Park, In-Deok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.296-301
    • /
    • 2020
  • Three types of traffic signal systems are two-color signal systems that flash red and green and are mainly used on crosswalks, next, three-color equalization systems mainly used at T-shaped intersections with red and yellow lights and a green arrow, and third, four-color intersections that generally have red, yellow and green colored lights and a green arrow. In what is known as the "dilemma zone" area, a driver collects information that influences his/her decision whether to stop, speed, tail, interrupt, or violate a traffic light, depending on the intersection width, vehicle speed, cognitive response time and reference yellow signal time. This study examined the impact of changes in the length of the dilemma zone areas based on changes in yellow signal times, the speed of the intersection passages, and signal lamps. Downward adjustments of 50km/h and 60km/h affected yellow signal time. The yellow signal time increased by 0.1 to 2.3[s] due to this effect and the dilemma zone area increased by 1.22 to 26[m]. The driver of the dilemma zone could quickly decide to reduce the time remaining of the straight (3color, 4color) green signal to reduce the potential of a traffic accident at the intersection traffic. Safe entry of red (LED palm) and left-turn signals for entering flashed at the intersection and operated at midnight.

Quantitative Evaluation of the Semi-Actuated Signal Control Systems (반감응 신호제어의 정량적 효과 평가에 관한 연구)

  • Kim, Seung-Jin;Lee, Sang-Soo;Lee, Choul-Ki;Park, Sung-Kyun;Lee, Ho-Jun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.3
    • /
    • pp.19-28
    • /
    • 2013
  • This study evaluated the quantitative effects of the deployment of semi-actuated signal systems using field data. For this, a semi-actuted signal system was deployed in the regional roadway network extensively. This paper investigated an operating strategy of semi-actuated signal systems for field application, and implemented the functional strategy into the standard signal controller. The performance was evaluated using three measures of effectiveness such as traffic volume, travel time, and the number of delayed vehicle. From the analysis results, traffic volume increased about 9.4% and 11.3% for morning and evening peak periods, respectively. The average travel time was reduced about 6.3% and 7.8% during morning and evening peak periods, respectively because of the expansion of bandwidths for major streets. In addition, the number of delayed vehicles was reduced about 36.4% and 23.9% for morning and evening peak periods, respectively. It is expected that the effectiveness of signal control system can be improved by incorporating a properly designed semi-actuated signal system in regional roadways with directional demand variation.

Geographically Weighted Regression on the Characteristics of Land Use and Spatial Patterns of Floating Population in Seoul City (서울시 유동인구 분포의 공간 패턴과 토지이용 특성에 관한 지리가중 회귀분석)

  • Yun, Jeong Mi;Choi, Don Jeong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.3
    • /
    • pp.77-84
    • /
    • 2015
  • The key objective of this research is to review the effectiveness of spatial regression to identify the influencing factors of spatial distribution patterns of floating population. To this end, global and local spatial autocorrelation test were performed using seoul floating population survey(2014) data. The result of Moran's I and Getis-Ord $Gi^*$ as used in the analysis derived spatial heterogeneity and spatial similarities of floating population patterns in a statistically significant range. Accordingly, Geographically Weighted Regression was applied to identify the relationship between land use attributes and population floating. Urbanization area, green tract of land of micro land cover data were aggregated in to $400m{\times}400m$ grid boundary of Seoul. Additionally public transportation variables such as intersection density transit accessibility, road density and pedestrian passage density were adopted as transit environmental factors. As a result, the GWR model derived more improved results than Ordinary Least Square(OLS) regression model. Furthermore, the spatial variation of applied local effect of independent variables for the floating population distributions.

Utilizability of Waste Concrete Powder as a Material for Soil Pavement (흙도로포장용 재료로서 폐콘크리트 미분말의 활용성 연구)

  • Kim, Yong-Jic;Choi, Yun-Wang;Kim, Young-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.277-282
    • /
    • 2015
  • This study is conducted to utilize waste concrete powder (WCP) made as a by-product manufacturing high quality recycled aggregate. The blaine fineness of the used waste concrete powder was $928cm^2/g$. As the main characteristic of waste concrete powder, it showed an angular type similar to cement, but hydrated products were attached on the surface of particles. In addition, the size of the particles of waste concrete powder was larger than OPC and in terms of chemical components it had higher $SiO_2$ contents. For using WCP in soil cement-based pavement, the qualities, physical and chemical properties, of WCP should be researched. In the first step, the specified compressive strength of mortar for two types of clay sand soil and clay soil respectively was experimented to be 15 MPa and then optimum mixing ratio of chemical solidification agent were decided in the range of 1.5 - 3.0% in the replacement with cement weight content. In the second step, based on the prior experimental results, recycling possibility of WCP in soil cement-based pavement was studied. In the result of experiment the mixing ratio of WCP were 5, 10, 15 and 20% in the replacement with soil weight and the compressive strength of mortar was somewhat decreased according to the increase of the mixing ratio of WCP.

Analysis of the effect of improving human thermal environment by road directions and street tree planting patterns in summer (여름철 도로 방향과 가로수 식재 방식에 의한 인간 열환경 개선효과 분석)

  • Jeonghyeon Moon;Yuri Choi;Eunja Choi;Jueun Yang;Sookuk Park
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.2
    • /
    • pp.1-18
    • /
    • 2024
  • This study aimed to identify the optimal street tree planting method to improve the summer thermal environment in Seoul, Republic of Korea. The effects of road direction and street tree planting patterns on urban thermal environments using ENVI-met simulations were analyzed. The 68 scenarios were analyzed based on four road directions and 17 planting patterns. The results showed that tree planting had a reducing air temperature, mean radiant temperature, human thermal sensation (PET and UTCI). The most effective planting pattern among all scenarios was low tree height (6m), wide crown width (9m), high leaf area index (3.0), and narrow planting interval (8m). The largest improvement in the thermal environment was the northern sidewalk of the east-west road. Since this study used computer simulations, the difference from real urban spaces should be considered, and further research is needed through field measurement and consideration of more variables.