DOI QR코드

DOI QR Code

여름철 도로 방향과 가로수 식재 방식에 의한 인간 열환경 개선효과 분석

Analysis of the effect of improving human thermal environment by road directions and street tree planting patterns in summer

  • 문정현 (제주대학교 일반대학원 원예학과) ;
  • 최유리 (제주대학교 일반대학원 원예학과) ;
  • 최은자 (제주대학교 일반대학원 원예학과) ;
  • 양주은 (제주대학교 일반대학원 원예학과) ;
  • 박수국 (제주대학교 생명자원과학대학 원예환경전공)
  • Jeonghyeon Moon (Graduate program in Horticultural Science, College of Applied Life Science, Jeju National University) ;
  • Yuri Choi (Graduate program in Horticultural Science, College of Applied Life Science, Jeju National University) ;
  • Eunja Choi (Graduate program in Horticultural Science, College of Applied Life Science, Jeju National University) ;
  • Jueun Yang (Graduate program in Horticultural Science, College of Applied Life Science, Jeju National University) ;
  • Sookuk Park (Department of Horticultural Science, College of Applied Life Science, Jeju National University)
  • 투고 : 2024.03.27
  • 심사 : 2024.05.14
  • 발행 : 2024.06.30

초록

본 연구는 서울시에서 도로 방향과 가로수 식재형태가 여름철 도시 열환경에 미치는 영향을 분석하여 최적의 식재방식을 찾는 것을 목표로 하였다. 컴퓨터 시뮬레이션 프로그램 ENVI-met을 이용하여, 도로 4방향과 가로수 식재형태에 따라 68가지 시나리오를 수행하였다. 그 결과, 수목 식재 시 기온, 평균복사온도, 인간 열환경지수가 개선되는 것으로 나타났다. 평균복사온도의 감소는 도로와 접한 건물에 의한 태양 복사에너지 차단과 수목의 그늘효과에 기인하였으며, 도로방향은 풍속 감소에 영향을 주는 것으로 나타났다. 모든 시나리오에서 낮은 수고(6m), 넓은 수관폭(9m), 높은 엽면적 지수(3.0), 좁은 식재간격(8m)일 때 가장 큰 열환경 개선효과를 보였다. 도로 방향은 동-서 방향의 북측 보도에서 열환경이 가장 크게 개선되었다. 본 연구는 컴퓨터 시뮬레이션을 이용해 현실도시공간과의 차이를 감안해야 하고, 현장 실측과 더 많은 변수 고려를 통한 추가연구가 필요하다.

This study aimed to identify the optimal street tree planting method to improve the summer thermal environment in Seoul, Republic of Korea. The effects of road direction and street tree planting patterns on urban thermal environments using ENVI-met simulations were analyzed. The 68 scenarios were analyzed based on four road directions and 17 planting patterns. The results showed that tree planting had a reducing air temperature, mean radiant temperature, human thermal sensation (PET and UTCI). The most effective planting pattern among all scenarios was low tree height (6m), wide crown width (9m), high leaf area index (3.0), and narrow planting interval (8m). The largest improvement in the thermal environment was the northern sidewalk of the east-west road. Since this study used computer simulations, the difference from real urban spaces should be considered, and further research is needed through field measurement and consideration of more variables.

키워드

참고문헌

  1. Ali-Toudert, F. and H. Mayer. 2006. Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Building and Environment 41(2):94-108. https://doi.org/10.1016/j.buildenv.2005.01.013
  2. Bae, W. and J. Lee. 2024. Assessing temperature and wind speed dynamics by building cluster type: Simulation of cold air spread along the han river during a heatwave in the Heukseok-dong area of Dongjak-gu, Seoul. Architectural Institute of Korea 40(1):157-168.
  3. Brode, P., Kruger, E.L., Rossi, F.A. and D. Fiala. 2012. Predicting urban outdoor thermal comfort by the Universal Thermal Climate Index UTCI-A case study in Southern Brazil. International Journal of Biometeorology 56:471-480.
  4. Chang, C.R. and M.H. Li. 2014. Effects of urban parks on the local urban thermal environment. Urban Forestry and Urban Greening 13(4):672-681. https://doi.org/10.1016/j.ufug.2014.08.001
  5. Choi, H.J. 2016. A study on the stability of the thermal environment in the city using a micrometeorological urban model (ENVI-met). Journal of the Korean Society of Architectural Eco-Friendly Facilities 10(6):416-427.
  6. Coccolo, S., Kampf, J., Scartezzini, J.L. and D. Pearlmutter. 2016. Outdoor human comfort and thermal stress: A comprehensive review on models and standards. Urban Climate 18:33-57. https://doi.org/10.1016/j.uclim.2016.08.004
  7. Coutts, A.M., White, E.C., Tapper, N.J., Beringer, J. and S.J. Livesley. 2016. Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theoretical and Applied Climatology 124:55-68. https://doi.org/10.1007/s00704-015-1409-y
  8. Dwyer, J.F., McPherson, E.G., Schroeder, H.W. and R.A. Rowntree. 1992. Assessing the benefits and costs of the urban forest. Journal of Arboriculture 18:227-227.
  9. Eom, Y.S., Kim, Y.J. and D.H. Kang. 2018. Effect of high-rise apartment building shape and densities on outdoor thermal environment by floor in summer season. Journal of Korean Institute of Architectural Sustainable Environment and Building Systems 12(2):87-100.
  10. Fanger, P.O. 1970. Thermal comfort. Analysis and applications in environmental engineering. Danish Technical Press. 244 pp.
  11. Guo, Y., Ren, Z., Wang, C. Zhang, P., Ma, Z., Hong, S., Hong, W., and X. He. 2024. Spatiotemporal patterns of urban forest carbon sequestration capacity: Implications for urban CO2 emission mitigation during China's rapid urbanization. Science of The Total Environment 912:168781.
  12. Hong, W.H., Lee, K.G. and W.D. Seo. 2007. Simulation of urban temperature characteristics and thermal environment according to land use conditions. Journal of the Architectural Institute of Korea 23(9):139-146.
  13. Jeong, M.A., Park, S.J. and G.S. Song. 2016. Comparison of human thermal responses between the urban forest area and the central building district in Seoul, Korea. Urban Forestry and Urban Greening 15:133-148. https://doi.org/10.1016/j.ufug.2015.12.005
  14. Jeong, S.K. and K.H. Park. 1999. Analysis on urban heat island effects for the metropolitan green space planning. Journal of the Korean Association of Geographic Information Studies 2(3):35-45.
  15. Jo, S., Kong, H., Choi, N., Shin, Y. and S. Park. 2023. Comparison of the thermal environment by local climate zones in summer: A case study in Suwon, Republic of Korea. Sustainability 15(3):2620.
  16. Jo, S.M., Hyeon, C.J. and S.K. Park. 2017. Analysis of the influence of street trees on human thermal sensation in summer. Journal of the Korean Institute of Landscape Architecture 45(5):105-112. https://doi.org/10.9715/KILA.2017.45.1.105
  17. Kim, D.W., Kim, J.K. and E.H. Jeong. 2010. Analysis of changes in microclimate environment due to urban park creation: Targeting Jung-gu, Daegu metropolitan city. Journal of the Korean Society of Urban Design 11(2):77-94.
  18. Kim, D.Y. 2011. The relationship of change of land cover and surface temperature using satellite images in Incheon. The Geographical Journal of Korea 45(3):493-501.
  19. Lai, D., Liu, W., Gan, T., Liu, K. and Q. Chen. 2019. A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Science of the Total Environment 661:337-353. https://doi.org/10.1016/j.scitotenv.2019.01.062
  20. Lee, H. and H. Mayer. 2021. Solar elevation impact on the heat stress mitigation of pedestrians on tree-lined sidewalks of E-W street canyons-Analysis under Central European heat wave conditions. Urban Forestry & Urban Greening 58:126905.
  21. Lee, K.J. and M.H. Jo. 2004. Analysis of urban surface temperature distribution properties using spatial information technologies. Korean Journal of Remote Sensing 20(6):397-408.
  22. Lim, H.W. 2022. Comparison and analysis of thermal environment modification effects of street tree planting types in summer according to road directions-based on Jeju city. Master thesis, Jeju National University.
  23. Lim, H.W., Jo, S.M. and S.K. Park. 2022. Analysis of thermal environment modification effects of street trees depending on planting types and street directions in summertime using ENVI-met simulation. Journal of the Korean Institute of Landscape Architecture 50(2):1-22.
  24. Matzarakis, A. and H. Mayer (1996) Another kind of environmental stress: thermal stress. WHO Collaborating Centre for Air Quality Management and Air Pollution Control Newsletters 18:7-10.
  25. Matzarakis, A., Mayer, H. and M.G. Iziomon. 1999, Applications of a universal thermal index: physiological equivalent temperature. International Journal of Biometeorology 43:76-84. https://doi.org/10.1007/s004840050119
  26. Morakinyo, T.E., Kong, L., Lau, K.L., Yuan, C. and E. Ng. 2017. A study on the impact of shadow-cast and tree species on in-canyon and neighborhood's thermal comfort. Building and Environment 115:1-17. https://doi.org/10.1016/j.buildenv.2017.01.005
  27. Morakinyo, T.E., Ouyang, W., Lau, K.K.L., Ren, C. and E. Ng. 2020. Right tree, right place (urban canyon): Tree species selection approach for optimum urban heat mitigation-development and evaluation. Science of The Total Environment 719:137461.
  28. Morakinyo, T.E. and Y.F. Lam. 2016. Simulation study on the impact of tree-configuration, planting pattern and wind condition on street-canyon's micro-climate and thermal comfort. Building and Environment 103:262-275. https://doi.org/10.1016/j.buildenv.2016.04.025
  29. Park, M.S., Hagishima, A., Tanimoto, J. and K. Narita. 2012. Effect of urban vegetation on outdoor thermal environment: Field measurement at a scale model site. Building and Environment 56:38-46. https://doi.org/10.1016/j.buildenv.2012.02.015
  30. Park, S.K. 2012. Landscape planning and design methods with human thermal sensation. Journal of the Korean Institute of Landscape Architecture 40(1):1-11. https://doi.org/10.9715/KILA.2012.40.1.001
  31. Park, S.K., Hyeon, C.J. and H. Kang. 2022. Analysis of human thermal environment in an apartment complex in late spring and summer - Magok-dong, Gangseo-gu, Seoul. Journal of the Korean Institute of Landscape Architecture 50(1):68-77.
  32. Ren, Z., Zhao, H., Fu, Y., Xiao, L. and Y. Dong. 2022. Effects of urban street trees on human thermal comfort and physiological indices: a case study in Changchun city, China. Journal of Forestry Research 33(3):911-922. https://doi.org/10.1007/s11676-021-01361-5
  33. Sanusi, R., Johnstone, D., May, P. and S.J. Livesley. 2017. Microclimate benefits that different street tree species provide to sidewalk pedestrians relate to differences in Plant Area Index. Landscape and Urban Planning 157:502-511. https://doi.org/10.1016/j.landurbplan.2016.08.010
  34. Sharmin, M., Tjoelker, M.G., Pfautsch, S., Esperon-Rodriguez, M., Rymer, P.D. and S.A. Power. 2023. Tree crown traits and planting context contribute to reducing urban heat. Urban Forestry and Urban Greening 83:127913.
  35. Shin J.H. 2022. Analysis of thermal environment depending on tree shape, leaf area index and planting rate in summer daytime : Jeju-si, Jeju Special Self-Governing Province. Master Thesis, Univ. of Jeju, Jeju, Korea. 39 pp.
  36. Song, B.G. and K.H. Park. 2012. Analysis of heat island characteristics considering urban space at nighttime. Journal of the Korean Association of Geographic Information Studies 15(1):133-143. https://doi.org/10.11108/kagis.2012.15.1.133
  37. Toparlar, Y., Blocken, B., Maiheu, B. and G.J.F Van Heijst. 2017. A review on the CFD analysis of urban microclimate. Renewable and Sustainable Energy Reviews 80:1613-1640. https://doi.org/10.1016/j.rser.2017.05.248
  38. Yoon, H.C., Kim, M.K. and G.Y. Jeong. 2013. Analysis of temperature change by forest growth for mitigation of the urban heat island. Journal of The Korean Society of Survey, Geodesy, Photogrammetry and Cartography 31(2):143-150. https://doi.org/10.7848/ksgpc.2013.31.2.143
  39. Zhao, Q., Sailor, D.J. and E.A. Wentz. 2018. Impact of tree locations and arrangements on outdoor microclimates and human thermal comfort in an urban residential environment. Urban Forestry and Urban Greening 32:81-91. https://doi.org/10.1016/j.ufug.2018.03.022