• Title/Summary/Keyword: 보강 섬유

Search Result 1,623, Processing Time 0.027 seconds

Parameter Study on R.C. Beam Strengthened with Steel Plate and Fiber Sheet (강판 및 섬유쉬트로 보강된 철근콘크리트 보의 매개변수 분석)

  • 유영준;박종섭;박홍석;정우태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.138-145
    • /
    • 2001
  • This paper presents F.E.M. analysis result about the behavior of R.C. beam repaired with steel plate and fiber sheet. The effect of repairing varies with reinforcement ratio of R.C. beam, plate thickness, numbers of fiber sheet, and repairing length, etc. F.E.M. analysis using a program, DIANA, was carried out taking these factors as parameter in this study. Analysis result shows that repaired R.C. beam behaves differently according to parameters and certain cases imply that repairing is useless or may lay structure in dangerous condition. F.E.M. model considers that interfacial behavior between different two parts of repaired beam is rigid based on an assumption that adhesive failure does not appear before yielding of reinforcement and its analysis shows the result coincides with that of experiment.

  • PDF

An Experimental Study on RC Slab Strengthened with Fiber (섬유시트로 보강된 RC 스래브의 실험적 연구)

  • Li, Zhi-Yong;Choi, Hyoung-Suk;Kim, Seong-Do;Cheung, Jin-Hwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.519-524
    • /
    • 2007
  • Recently, Fiber sheets have been used for strengthening the deteriorated reinforced concrete RC slabs because of its resistant capacity of corrosion and repairing works. The purpose of this study is to carry out the experimental studies on thirteen kinds of RC slabs and to investigate the behavior of RC slabs form the experimental results. Test parameters are the strengthening material, the number of sheet layer and strengthening direction. The behavior of strengthened He: slabs is represented by crack load-deflection curves and maximum load. And the parametric study based on the nonlinear FEM analysis are performed and its results are discussed.

  • PDF

Deduction Equation of Shear Strength of Steel Fiber Reinforced High Strength Concrete Beams (강섬유 보강 고강도 콘크리트 보의 전단강도 추정식(구조 및 재료 \circled2))

  • 조선정;박종건;곽계환
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.253-258
    • /
    • 2000
  • The purpose of this paper is to propose the deduction equation of shear strength of high strength reinforced concrete beams input steel fibrous. To propose the deduction equation of shear strength, we studied high reasonable verification by comparing proposal equation with other researches such as equation of ACI code 318-95 or equation of Zsutty. To propose the deduction equation of shear strength, regression analysis was done using MINITAP program. Finally, it has been tried to make an improvement of brittleness quality of high strength concrete which has been weak points and it is convinced the result by increase of deflection and strain about loads.

  • PDF

Mechanical Properties and Durability of Abrasion of EVA Concrete Reinforced Steel Fiber (강섬유 보강 EVA 콘크리트의 역학적 특성 및 내마모성)

  • Sung, Chan Yong;Nam, Ki Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.45-54
    • /
    • 2014
  • This study was performed to evaluate compressive strength, flexural strength, static modulus of elasticity, stress-strain ratio and durability of abrasion on EVA concrete reinforced steel fiber (SF) in order to use hydraulic structures, underground utilities, offshore structures and structures being applied soil contaminated area. It is used ordinary portland cement, crushed coarse aggregate, nature fine aggregate, EVA redispersible polymer powder, superplasticizer and deforming agent to find optimum mix design of EVA concrete reinforced steel fiber. EVA concrete reinforced SF was effected on the improvement of mechanical properties and durability of abrasion.

The Strength Characteristics of Concrete Confined with Composite Fiber (복합섬유(複合纖維) 횡보강(橫補强)콘크리트의 강도(强度) 특성(特性)에 관한 연구(硏究))

  • Jang, Jeong-Su;Jo, Seong-Chan;Gang, Chung-Ryeor
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.93-102
    • /
    • 2001
  • The objective of this experimental study is to evaluate the strengthening effects of concrete compression confined with Epoxy-boned compound fiber sheets. An analytical model is proposed to construct a stress-strain relationship for confined concrete. Test results are summarized as followed. While non-FRP lateral confinement specimens appeared sudden failure after shell concrete was torn off, specimens confined laterally with FRP were showed that their failure. Specially, Glass fiber lateral confined specimens occurred obviously increase ductility ability. Hence, concrete specimen with lateral confinement by Hi-carborn and Aramide. Glass fiber simultaneously can be increased in not only strength but also a lot of ductility ability.

  • PDF

A Study on the Flexural Toughness of Steel Fiber Reinforced Recycled Concrete (강섬유 보강 재생 콘크리트의 휨인성에 관한 연구)

  • Koo, Bong-Kuen;Kim, Tae-Bong;Kim, Chang-Woon;Park, Jae-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.161-169
    • /
    • 2000
  • Recycled aggregates were generated when concrete structures were dismembered. However, in concrete structures, because of durability, strength and toughness, recycled aggregates don't use generally. This study was done to use recycled aggregate in concrete structures. Problems of durability, strength, and toughness were caused troubles, when recycled aggregates were used, were solved as steel fibers and additives were added. Of course, steel fiber length, steel fiber contents, additive substitution, and recycled aggregate substitution were variables of this study. After flexural specimens($15{\times}15{\times}70cm$) with notch(45mm) were fabricated, basic strength tests were done and toughness was estimated using fracture mechanics parameters. The results suggest that JIC is a promising fracture criterion for all of these, while KIC(or GIC) almost certainly are not.

  • PDF

A Study on Existing Evaluation Method and TES Method about Toughness of Fiber Reinforced Concrete (섬유보강콘크리트의 인성에 대한 기존평가방법과 TES 기법에 관한 연구)

  • 배주성;임정환;김경수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.797-802
    • /
    • 1998
  • Fiber reinforcement can significantly improve the properties of concrete. Particulary, toughness or energy-absorbing ability of fiber reinforced concrete is frequently higher than that of unreinforced concrete. Toughness is a measure of energy absorption capacity and used to characterized fiber reinforced concrete's ability to resist fracture when subjected to static, dynamic and impact loads. However, the current standard methods of characterizing the toughness of fiber reinforced concrete have proven to be some inadequate and problems and have caused a great deal of dissent and confusion. This study research some of the inadequate and problems with these toughness measurement methods and proposes the evaluation method for Fiber Reinforced Concrete toughness.

  • PDF

A study on development of methods to rehabilitate the damaged prestressed concrete beam using glass fiber (유리섬유를 이용한 손상된 프리스트레스트 콘크리트보의 보강공법 개발연구)

  • 한만엽;이택성;강원호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.815-820
    • /
    • 1998
  • Many composite girder bridges have been constructed for about thirty five years. Nowadays they are aged or deteriorated because of th increase in traffic and vehicle loads. In this study, the effect of strengthening with glass fiber sheet is investigated to estimate the possibility for appling for damaged prestressed concrete bridges. One normal and eight cracked specimens which had been preloaded were tested. The cracked specimens were strengthened with either external prestressing or bonding glass fiber sheet, or using both methods. The results showed that the maximum loads are almost same for both methods. So it seems that the strengthening with glass fiber sheet can be used for strengthening damaged prestressed concrete girders. It is important that proper devices should be selected to prevent glass fiber sheet from premature bonding failure below its maximum load, which is similar to end anchorage problem in external prestressing method. It is proved that the devices proposed in this paper have sufficient anchoring capability to increase load carrying capacity.

  • PDF

Static and Fatigue Test on RC Flexural Beam with Glassfibers (유리섬유로 보강괸 RC휨부재에 대한 정적 및 피로실험)

  • 손영준;윤진수;강보순;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.851-856
    • /
    • 1998
  • In recent years, glassfibers have been used for strengthening in RC structure because of low material cost and easy repairing work. The purpose of this study is to experimentally and analytically investigate the effect of glassfibers for enhancing the capacity of RC structure. The result shows that yield and ultimate strength of RC beam with glassfibers are increased by approximate 13% and 26%, comparing with those for RC beam without glassfibers. It has been observed from the test that fatigue behaviors of RC beam with glassfibers have been significantly and large improved comparing with those for RC beam without glassfibers.

  • PDF

An Experimental Study on the Flexural Fatigue Behavior of Steel Fiber Reinforced High Strength Concretes Beams with Single Edged Notch (노치를 가진 강섬유 보강 고강도 콘크리트 보의 휨 피로거동에 관한 실험적 연구)

  • 구봉근;김태봉;김흥룡
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.120-125
    • /
    • 1992
  • The fatigue tests were performed on the high strength concrete beams with single edged notch which was reinforced steel fiber. The steel fibers were used 1.0 percent by volume fraction. These were tested consists of constant amplitude tests for different levels of loading. The test program included endurance limit with repect to flexural fatigue and relation of load-CMOD(crack mouth opening displacement). The results of test, it is found from S-N curve that the fatigue strength for a life of 2 million cycles of load was approximately 70percent with respect to the static ultimate strength .

  • PDF