• Title/Summary/Keyword: 보강변수

Search Result 828, Processing Time 0.027 seconds

Correlation between Mix Proportion and Mechanical Characteristics of Steel Fiber Reinforced Concrete (강섬유 보강 콘크리트의 배합비와 역학적 특성 사이의 관계 추정)

  • Choi, Hyun-Ki;Bae, Baek-Il;Koo, Hae-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.331-341
    • /
    • 2015
  • The main purpose of this study is reducing the cost and effort for characterization of tensile strength of fiber reinforced concrete, in order to use in structural design. For this purpose, in this study, test for fiber reinforced concrete was carried out. Because fiber reinforced concrete is consisted of diverse material, it is hard to define the correlation between mix proportions and strength. Therefore, compressive strength test and tensile strength test were carried out for the range of smaller than 100 MPa of compressive strength and 0.25~1% of steel fiber volume fraction. as a results of test, two types of tensile strength were highly affected by compressive strength of concrete. However, increase rate of tensile strength was decreased with increase of compressive strength. Increase rate of tensile strength was decreased with increase of fiber volume fraction. Database was constructed using previous research data. Because estimation equations for tensile strength of fiber reinforced concrete should be multiple variable function, linear regression is hard to apply. Therefore, in this study, we decided to use the ANN(Artificial Neural Network). ANN was constructed using multiple layer perceptron architecture. Sigmoid function was used as transfer function and back propagation training method was used. As a results of prediction using artificial neural network, predicted values of test data and previous research which was randomly selected were well agreed with each other. And the main effective parameters are water-cement ratio and fiber volume fraction.

Flexural Behaviors of Reinforced Concrete Beams Strengthened with Carbon Fiber Sheets (탄소섬유시트로 보강된 철근콘크리트 보의 휨 거동)

  • Kim, Seong-Do
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.227-234
    • /
    • 2010
  • To investigate the flexural behavior of RC beams strengthened with carbon fiber sheets, 1 control beam and 8 strengthened beams(4 NU-beams without U-shaped band and 4 U-beams with U-shaped band) are tested. The variables of experiment are composed of the number of carbon fiber sheets and the existence of U-shaped band, etc. The experimental results showed that the strengthening system with U-shaped band controls the premature debonding and provides a more ductile failure mode than the strengthening system without U-shaped band. It can be found from the load-deflection curves that as the number of fiber sheets is increased, the maximum strength and the flexural rigidity is increased. The experimental results are compared with the analytical results of nonlinear flexural behaviors for strengthened RC beam. The proposed analytical method for strengthened beams is proved to be accurate by an experimental investigation of load-deflection curve, yield load, maximum load, and flexural rigidities in the pre- and post-yielding stages.

Slump and Mechanical Properties of Hybrid Steel-PVA Fiber Reinforced Concrete (강섬유와 PVA 섬유로 하이브리드 보강된 콘크리트의 슬럼프 및 역학적 특성)

  • Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.651-658
    • /
    • 2010
  • Sixteen concrete mixes reinforced with hybrid steel-polybinyl alcohol (PVA) fibers and a control concrete mix with no fiber were tested in order to examine the effect of the micro and macro fibers on the slump and different mechanical properties of concrete. Main variables investigated were length and volume fraction of steel and PVA fibers. The measured mechanical properties of hybrid fiber reinforced concrete were analyzed using the fiber reinforcing index and compared with those recorded from monolithic steel or PVA fiber reinforced concrete. The initial slump of hybrid fiber reinforced concrete decreased with the increase of the aspect ratio and the volume fraction of fibers. In addition, splitting tensile strength, modui of rupture and elasticity, and flexural toughness index of concrete increased with the increase of the fiber reinforcement index. Modulus of rupture and flexural toughness index of hybrid fiber reinforced concrete were higher than those of monolithic fiber reinforced concrete, though the total volume fraction of hybrid fibers was lower than that of monolithic fiber. For enhancing the flexural toughness index of hybrid fiber reinforced concrete, using the steel fiber of 60 mm length was more effective than using the steel fibers combined with 60 mm and 30 mm lengths.

Evaluation on the Thermal Resistance Capacity of Fire Proof Materials for Improving Fire Resistance of Near-Surface-Mounted FRP in Concrete (콘크리트내에 표면매입 보강된 FRP의 내화성능 향상을 위한 내화단열재 열저항성능 평가)

  • Yeon, Jea-Young;Seo, Soo-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.51-58
    • /
    • 2014
  • This paper presents a fire exposure test result to evaluate fire resistance capacity of retrofit method using FRP (Fiber Reinforced Polymer) in reinforcement concrete structure. Especially, this paper focused on near-surface-mounted retrofit method; FRP is mounted into the groove after making a groove in concrete. In the test, main parameters are retrofit method and materials for fire proofing. Spray type of perlite and board type of calcium silicate were considered as external fire proof on surface while particle of calcium silicate and polymer mortar as internal one in groove. By increasing the temperature of inside heating furnace, the transfer of temperature from surface of fire proofing material to groove in specimen was measured. As a result, fire proofing using the board of calcium silicate was more effective to delay the heat transfer from outside than spraying with perlite. It was found that the fire proofing could resist outside temperature of $820^{\circ}C$ at maximum to keep the temperature of epoxy below glass transit temperature (GTT).

Evaluation of Seismic Strengthening Approach at the Boundary Elements of RC Walls using Prestressed Wire Rope Units (프리스트레스트 와이어로프를 사용한 RC 벽체의 단부 경계요소 내진보강 평가)

  • Kwon, Hyuck-Jin;Yang, Keun-Hyeok;Byun, Hang-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.56-63
    • /
    • 2018
  • The present study examined the reversal cyclic flexural behavior of walls with jacket section approach for seismic strengthening through forming the boundary elements at both ends of the wall. The prestressed wire ropes were used for the lateral reinforcement to confine the boundary element of the wall. The main parameter investigated was the height of the jacket section for strengthening. The limit height of the strengthening jacket section was determined by comparing the moment distributions between the existing and strengthened walls. Test results showed that the examined jacket section approach was significantly effective in enhancing the flexural resistance of walls, indicating 46% higher stiffness at peak strength and 210% greater work damage indicator, compared with the flexural performance of the unstrengthened wall. The ductility of the strengthened walls was insignificantly affected by the height of the jacket section when the height is greater than twice the wall length. The flexural capacity of the strengthened walls was 22% higher than the predictions obtained using the equivalent stress block specified in ACI 318-14.

Service and Ultimate Load Behavior of Bridge Deck Reinforced with GFRP Rebars (GFRP 보강근으로 보강된 교량 바닥판의 성능과 사용성에 관한 실험연구)

  • Yu, Young Jun;Park, Young Hwan;Park, Ji Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.719-727
    • /
    • 2008
  • The tensile and bond performance of GFRP rebar are different from those of conventional steel reinforcement. It requires some studies on concrete members reinforced with GFRP reinforcing bars to apply it to concrete structures. GFRP has some advantages such as high specific strength, low weight, non-corrosive nature, and disadvantage of larger deflection due to the lower modulus of elasticity than that of steel. Bridge deck is a preferred structure to apply FRP rebars due to the increase of flexural capacity by arching action. This paper focuses on the behavior of concrete bridge deck reinforced with newly developed GFRP rebars. A total of three real size bridge deck specimens were made and tested. Main variables are the type of reinforcing bar and reinforcement ratio. Static test was performed with the load of DB-24 level until failure. Test results were compared and analyzed with ultimate load, deflection behavior, crack pattern and width.

A Study of Impact Reduction Characteristics of Hat-Shaped Stiffened Panel Under Hypervelocity Impact (초고속 충돌을 받는 모자형 보강 패널의 충격 저감 특성에 관한 연구)

  • Yang, Tae-Ho;Lee, Young-Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.929-935
    • /
    • 2013
  • This paper presents the results of sizing optimization of ahat-shaped stiffener on a rectangular stiffened panel. The stiffened panel is subjected to impact loading by a projectile with a velocity of 1500-2500 m/s. To determine the size of the hat-shaped stiffener, sizing optimization was performed. The sizing optimization consists of three functions: objective, constraint, and design functions. The objective function is used to maximize the fundamental frequency of the stiffened panel. The constraint function is that the stiffener volume is less than 10% of the plate volume. The design function is the dimensions of the hat-shaped stiffener. By using the stiffened panel with the optimized hat-shaped stiffener, a hypervelocity impact was simulated, and the velocity and kinetic energy on the optimized stiffener was obtained. To evaluate the impact reduction on the stiffened panel, the velocity and kinetic energy of the projectile was normalized and compared.

A Study on Strengthening of Reinforced Concrete Pier Caps Using Prestressed Near Surface Mounted CFRP (프리스트레스가 도입된 표면매립 CFRP를 이용한 교각 두부 보강에 관한 연구)

  • Hong, Sung-Nam;Kim, Tae-Wan;Park, Sun-Kyu;Park, Jong-Sup;Park, Young-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.595-602
    • /
    • 2007
  • Recently, concrete structures with carbon fiber reinforced polymer (CFRP) reinforcements have been commonly used for the bridge and building construction. In this paper, pier caps were strengthened by prestressed near surface mounted CFRP. To verify the effectiveness of the strengthening method, 7 pier cap specimens were fabricated. One specimen was designed for control, two for external prestressing steel strands, two for CFRP plates, and two for CFRP bars. Experimental variables consist of type of reinforcement materials and prestressing levels. The results of laboratory have shown that the ultimate load capacities of prestressed near surface mounted CFRP specimens were about $20{\sim}33%$ greater than that of a control specimen. Also, ultimate load capacities of prestressed near surface mounted CFRP specimens were similar to those of external prestressing specimens with steel strands.

Flexural Behavior of Reinforced Concrete Beam Strengthened with Carbon Fiber Sheet under Load History (하중이력에 따른 탄소섬유로 보강된 RC보의 휨 거동)

  • Yoon, Tae-Ho;Kim, Jin-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.845-852
    • /
    • 2015
  • This study examined the flexural strength of CFS reinforced concrete beams with various load histories. The RC beams to be reinforced by CFS have undergone various loading histories but neglecting the loading history results in a few problems in structural safety and cost. Structural behavior of CFS-strengthened RC beams were analyzed considering the strain status of RC beams under loads at the time of CFS strengthening. Nonlinear section analysis showed that the flexural strength of CFS-strengthened RC beams depends on the load history of the RC beams. From the result of this analysis, the flexural strength of a CFS-strengthened concrete beam is affected considerably by the load history and should be considered in CFS reinforcement.

Effect of an Opening on Buckling Strength of Polygonal Section Wind Turbine Tower (다각형 단면 풍력타워 좌굴강도에 대한 개구부의 영향)

  • Choi, Byung Ho;Park, Seong Mi;Hwang, Min Oh
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.163-163
    • /
    • 2011
  • 풍력타워 기둥구조물에는 유지관리 등의 이유로 출입구 역할을 하는 개구부가 존재하게 된다. 다각형 타워구조물에 개구부형상이 존재하게 되면 압축좌굴 강도에 영향이 있을 것으로 예상되지만, 이를 정량적으로 평가하거나 예측하기는 용이하지 않고 간접적으로 판단할 만한 관련 기준이나 지침도 부족한 상태이다. 이에 최병호 등(2011)에서 다룬 다각형 단면 기둥구조물의 하단에 개구부를 형상화한 수치해석 모델을 수립하고 축방향 압축하중을 재하하는 탄성좌굴 해석 및 비선형비탄성해석을 수행하였다. 본 논문에서는 기존 다각형 단면 기둥모델 중에서 6각형 단면모델에 관해 중점적으로 다루고 있다. 다각형 단면 기둥 해석모델은 단순한 다각형 단면 타워구조에 대해서 뿐 만 아니라, 각 subpanel에 종방향 보강재를 둔 모델에 대해서도 추가적으로 검토하였다. 개구부의 형상은 높이 2000mm, 폭 800mm이며 상하부에 만곡부를 둔 형태이다. 수치해석은 3차원 유한요소해석프로그램인 ABAQUS를 이용하여 수행하였으며, 보강방안으로는 일정범위까지의 모듈 subpanel의 판두께를 보강하는 방안과 edge stiffener를 적용하는 방안에 대해서 검토하였다. 각각의 보강방식에 따른 효과를 비교해 보기 위해 개구부가 없는 모델, 단순히 개구부만 설정한 모델, 판두께를 보강한 모델, edge stiffener로 보강한 모델에 대해 비교해석을 수행하였다. 보강재 없는 단순 다각형 타워구조 모델에 대한 해석결과로부터 개구부로 인한 강도저하는 미미한 수준인 것으로 나타났다. 반면, 종방향 보강재가 적용된 6각형 단면 타워구조 모델에서는 개구부로 인한 강도저감이 22.9%로 높게 나타났으며 상당한 영향이 있는 것으로 분석되었다. 또한 개구부 주변의 판두께 보강이나 edge stiffener보강 등으로 상당한 강도향상 효과가 확인되었으나, 개구부로 인해 손실된 강도 수준을 완전히 회복하는 수준에 미치지 못하는 것으로 나타났다. 따라서, 향후 다양한 보강방식에 대한 보다 포괄적인 변수연구를 통해 개구부의 영향 없이 온전한 다각형 단면 타워 구조의 극한강도에 도달되기 위한 보강 조건에 대해 검토될 필요가 있을 것으로 사료된다.

  • PDF