• Title/Summary/Keyword: 보강변수

Search Result 824, Processing Time 0.022 seconds

A Study on the Strength and the Deformation Capacity of RC Beams Strengthened with Aramid Fiber Sheet (아라미드 섬유쉬트로 휨보강한 RC보의 강도성능 및 변형성능에 관한 고찰)

  • 이현호;구은숙
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.5
    • /
    • pp.151-158
    • /
    • 1998
  • 최근 들어 구조물을 보강하는 방법으로 강판 또는 섬유쉬트를 외부에 부착시키는 공법이 많이 사용되고 있다. 섬유쉬트 중에서 가장 널리 사용되는 것은 탄소섬유쉬트이지만, 성능면에서 뒤지지 않고 가격면에서는 오히려 유리한 아라미드섬유쉬트에 관한 연구는 전무한 실정이다. 본 연구에서는 아라미드섬유쉬트로 휨보강한 RC보의 파괴양상 및 강도성능, 변형성능을조사하고, 여섯 개의 보강변수에 대한 보강효과를 조사하였다. 인장철근비, 보강길이, 보강겹수, 앵커볼트 정착 유무가 각각 다른 16개의 실험체와 밑면 마감처리 및 부재손상 여부가 다른 2개의 실험체, 그리고 이들 보강 실험체의 비교 근거가 되는 비보강 실험체 2개를 실험하여 그 특성을 연구하였다. 실험결과, 보강성능과 파괴양상에 가장 큰 영향을 미치는 변수는 보강길이로 나타났다. 보강겹수도 어느 정도의 영향을 미치는 것으로 나타났으나 그외 다른 변수들의 영향은 미비한 것으로 판단된다.

An Experimental Study on the Strengthening Effect of RC Beams Strengthened by CFRP (탄소섬유 보강재로 보강한 RC 보의 보강효과에 관한 실험적 연구)

  • Kim, Jae-Hun;Park, Sung-Moo;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.4 s.18
    • /
    • pp.71-77
    • /
    • 2005
  • Bonded CFRP Plate method used murk in reinforcement method is very efficient for stress increment of reinforced members. But CFRP plate dosen't display enough its capacity and have the destruction characteristic of premature failure that reach failure by debond plate, because near-surface-bond using epoxy. Such destruction character of reinforced specimens take the influence at variables as steel reinforcement ratio, concrete strength, kind of reinforcement materials, reinforced length, property of epoxy used in binder and so on. In this study, performed experiment results are compared and considered on flexural performance of Near Surface Mounted Reinforcement used CFRP-Rod, as complement about structural behavior of RC beam reinforced flexural capacity in CFRP plate and premature failure of reinforcement material. Main variables of RC beam applied CFRP Plate external bond method are experimental variables as reinforcement length, reinforcement position (tension face and side face of beam) and existence of ironware in end parts. In case of CFRP-Rod, variable is reinforcement length.

  • PDF

Analysis of Strengthening Veriables for Strengthened Bridge Decks by Externally Bonded Sheet (보강판으로 외부부착 보강된 교량 바닥판의 성능향상을 위한 변수 해석)

  • 심종성;오흥섭
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.556-565
    • /
    • 2002
  • The concrete bridge decks on the main girder will usually develop initial cracks in the longitudinal or the transverse direction due to dry shrinkage and temperature change, and as the bridge decks age the crack will gradually develop in different directions due to repeated cyclic loads. The strengthening direction of the concrete bridge deck is a very important factor in improving proper structural behavior. Therefore, in this study, theoretical analyses of strengthened bridge decks were performed using the nonlinear finite element method. To improve the accuracy of the analytical result, boundary conditions and material property of strengthening material was simulated by laboratory condition and test results, respectively. The effect of the strengthening direction and the amount of strengthening material were estimated and compared to the experimental results. The efficiency of the strengthened bridge decks by strengthening variables such as the amount, width and thickness of CFS was observed.

A Study on the Optimum Modification of Dynamic Characteristics of Stiffened Plate Structure of Ship (선박의 보강판 구조물의 동특성의 최적 변경법에 관한 연구)

  • 박성현;박석주;고재용
    • Journal of the Korean Institute of Navigation
    • /
    • v.25 no.1
    • /
    • pp.45-52
    • /
    • 2001
  • The purpose of this study is the optimum modification of dynamic characteristics of stiffened plate structure. In the method of the optimization, finite element method(FEM), sensitivity analysis and optimum structural modification method are used. To begin with, using FEM, the dynamic characteristics of stiffened plate structure is analyzed. Next, rate of change of dynamic characteristics by the change of design variable is calculated using the sensitivity analysis. Then, amount of change of design variable is calculated using this sensitivity value and optimum structural modification method. The change of natural frequency is made to be an objective function. Thickness of plate and cross section moment become a design variable. It is shown that the results are effective in the optimum modification for dynamic characteristics of the stiffened plate structure.

  • PDF

Maximization of the natural frequency of a structure using shape optimization (형상 최적화를 통한 구조물의 고유진동수 최대화)

  • 서범석;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.167-172
    • /
    • 2001
  • 구조최적화는 기계구조물의 동특성을 변경하기 위하여 필수적으로 수행되어야 할 요소이다. 어떠한 방법을 택하여 보다 효율적으로 수행할 것 인지가 엔지니어의 관심일 것이다. 구조최적화는 설계변수에 따라 치수최적화, 물성치최적화 형상최적화 등으로 나눌 수 있다. 형상 최적화는 구조물의 유한요소모델을 기본으로 경계의 형상이나 절점의 형상, 회전 등을 설계 변수로 삼는 것이다. 고유진동수를 높이거나 모드형상을 제어하기 위하여 평판에 보강재를 붙이는 경우가 있다. 이때 보강재의 위치나 치수 형상 등이 중요한 변수가 될 수 있다. 본 논문에서는 평판의 고유진동수를 극대화 하기위해 보 보강재를 붙이는 문제에서 보의 회전을 설계 변수로 삼아 최적설계를 수행 할 것이다.

  • PDF

Behavior Characteristics of Reinforced Concrete Beam Strengthened with Carbon Fiber Reinforced Polymer Plate (CFRP로 보강된 철근콘크리트 보의 거동 특성)

  • Park, Jung-Yeol;Hwang, Seon-Il;Cho, Hong-Dong;Han, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.125-131
    • /
    • 2003
  • This paper presents the characteristics of flexural behavior of RC beam strengthened with CFRP(Carbon Fiber Reinforced Polymer Plate). Experimental variables included the strengthening length, width, reinforcement ratio, end anchorage and preloading corresponding to 75 percent of ultimate capacity and the effects according to each experimental variables were analyzed. To study, a total 21 RC beams were constructed, tested and the response of the beams in terms of ultimate load, deflection, strain of CFRP, failure mode were examined.

An Experimental Study on Flexural Behavior of RC Beams Strengthened with Hi-Strength Bars(3) (고장력 인장봉으로 보강된 RC 보의 휨 거동에 관한 실험적 연구(3))

  • Shin, Kyung-Jae;Kim, Yoon-Jung;Moon, Jeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.351-358
    • /
    • 2007
  • Unlike external bonded steel plate or carbon fiber, the external unbonded strengthening using hi-strength bar has some advantages in speed and simplicity of installation. It is not required surface preparations and not affected by environmental conditions. A set of nine laboratory tests on RC beams strengthened using the hi-tension bars are reported. Anchoring pin developed in former research is installed at the end of beam to connect the hish-tension bar to RC beam. The test results strengthened by hi-tension bars are compared with those of non-strengthened specimens. The main test parameters are the cross-sectional area of the high-tension bar, distance of stirrups and condition of supports. Test results show that the beams reinforced are superior to reference specimens, especially for the strength and deformation capacity. Also, shear resisting effect of hi-strength bar can be confirmed in the specimens which have lack of stirrups.

Relation of Deflection of Prestressed Concrete Members to Unbonded Tendon Stress and Effects of Various Parameters (비부착 프리스트레스트 보강재를 갖는 PSC 부재의 변위와 프리스트레스트 보강재 응력의 상관관계 및 변수별 효과)

  • 문정호;임재형;이창규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.171-179
    • /
    • 2002
  • This paper is a part of research series for the verification of the proposed Moon/Lim design equation. An analytical study was performed to examine the relation between the flexural behavior and the unbonded tendon stress of PSC members. The strain compatibility assumption was used in this study since previous studies showed that the stress variations of tendon had a close relation with the member displacements. The proposed equation has been developed with the same assumption of strain compatibility. Therefore the analytical procedure with the strain compatibility assumption was developed to compute the member displacements of previous tests. Then the analytical results were compared with tests results. The comparison showed that the strain compatibility assumption can be properly applicable to the design equation. Based on the analytical results, the relation between the tendon stress and the member flexural behavior at ultimate was examined. A parametric study also carried out with regard to the member displacements. As results, the parameters used for the proposed equation were proven to be proper for the computation of tendon stress.

Analytical Study on the Flexural Strength of CFS Reinforced Concrete Beams under Service Loads (사용하중을 받는 RC보의 탄소섬유 휨 보강에 관한 해석적 연구)

  • Yoon, Tae-Ho;Kang, Kyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3745-3751
    • /
    • 2011
  • In this study flexural strength of damaged concrete beams reinforced by CFS is analysed. Nonlinear section analysis is used to include stress status of tension bars and compressive concrete under loads acting on the original member at the time of strengthening. Calculated flexural strength is compared with Sin-Hong formula which is frequently used in CFS reinforcement design. Nonlinear analysis with variation of the number of strengthening CFS, the ratio of tensile reinforcement, the ratio of section dimension shows that the flexural strength of CFS reinforced beams much depends on reinforcing stage. From the result of this analysis, the flexural strength of CFS reinforced concrete beam is reduced according to the magnitude of pre-loaded service loads.

Premature Failure Load of Reinforced Concrete Beams with Flexural Strengthened by Steel Plates (강판으로 휨 보강된 철근콘크리트 보의 조기파괴하중 산정)

  • Kim, Haeng-Jun;Kim, Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.283-292
    • /
    • 2005
  • This paper predicts premature failure load of reinforced concrete beams by epoxy-boned partially steel plates. A parametric study is conducted to estimate premature failure load of beams such as with or without stirrups, unplated length ratio, steel and reinforcement ratio, shear span to depth ratio of reinforcement beam. By results of finite element analysis, it turned out that the unplated length played a dominant role in partially plated beams but reinforcement ratio and shear span to depth ratio effected the premature failure load. The approximate expression with regard to combined design variables is compared with experimental results. It shows closely agreement.