• Title/Summary/Keyword: 병해저항성

Search Result 102, Processing Time 0.029 seconds

Evaluation of Cabbage- and Broccoli-genetic Resources for Resistance to Clubroot and Fusarium Wilt (뿌리혹병 및 시들음병에 대한 저항성 양배추와 브로콜리 유전자원 탐색)

  • Lee, Ji Hyun;Jo, Eun Ju;Jang, Kyoung Soo;Choi, Yong Ho;Kim, Jin-Cheol;Choi, Gyung Ja
    • Research in Plant Disease
    • /
    • v.20 no.4
    • /
    • pp.235-244
    • /
    • 2014
  • Clubroot and Fusarium wilt of cole crops (Brassica oleracea L.) are destructive diseases which for many years has brought a decline in quality and large losses in yields all over the world. The breeding of resistant cultivars is an effective approach to reduce the use of chemical fungicides and minimize crop losses. This study was conducted to evaluate the resistance of 60 cabbage (B. oleracea var. capitata) and 6 broccoli (B. oleracea var. italica) lines provided by The RDA-Genebank Information Center to clubroot and Fusarium wilt. To investigate resistance to clubroot, seedlings of the genetic resources were inoculated with Plasmodiophora brassicae by drenching the roots with a mixed spore suspension (1 : 1) of two isolates. Of the tested genetic resources, four cabbage lines were moderately resistant and 'K166220' represented the highest resistance to P. brassicae. The others were susceptible to clubroot. On the other hand, to select resistant plants to Fusarium wilt, the genetic resources were inoculated with Fusarium oxysporum f. sp. conglutinans by dipping the roots in spore suspension of the fungus. Among them, 17 cabbage and 5 broccoli lines were resistant, 16 cabbage lines were moderately resistant, and the others were susceptible to Fusarium wilt. Especially, three cabbage ('IT227115', 'K161791', 'K173350') and two broccoli ('IT227100', 'IT227099') lines were highly resistant to the fungus. We suggest that the resistant genetic resources can be used as a basic material for resistant B. oleracea breeding system against clubroot and Fusarium wilt.

Rice Breeding for the Resistance to the Disease and Insect Pests (수도 병해충에 대한 저항성품종의 육종)

  • Heu M. H.
    • Korean journal of applied entomology
    • /
    • v.22 no.2 s.55
    • /
    • pp.74-83
    • /
    • 1983
  • Yield losses due to diseases and insect pests were mentioned and emphasized the efficiency of resistant cultivars in curving the yield losses and increasing chemical efficiency. Present status of resistance breeding for blast, bacterial leaf blight viruses, brown planthopper and white backed planthopper were introduced and the resistance sources for those are discussed. Breeding strategies for above items were presented. Specially for the blast resistance, discussions were made in some detail. With brief future prospects of resistance breeding in Korea, a suggestion was made for pathologists to make clear about whether the blast spores will be brought from mainland China as we see with Bph and Wbph or not.

  • PDF

유전자 변형 농산물의 개발 실태와 전망

  • 최양도;정종주
    • Proceedings of the Korean Society of Food Hygiene and Safety Conference
    • /
    • 2002.05a
    • /
    • pp.3-42
    • /
    • 2002
  • 21세기에는 인구의 폭발적 증가와 함께 가속화된 산업화로 말미암아 경지 면적은 줄고 농업 환경은 더욱 피폐해질 것으로 예상된다. 지금도 이미 화석 에너지원의 고갈로 대체 에너지 개발이 시급히 요구되고 있으며, 지구의 자연 환경 보존 목소리도 그 어느 때 보다 높다. 한마디로 식량, 에너지, 환경 문제가 새 세기에 우리가 시급히 해결해야할 과제로 주어져 있다. 이에 과학계에서는 식량 및 대체 에너지원의 공급을 증대시키고 환경을 보존할 수 있는 보편적인 수단으로 환경 친화적 유전자 변형 (GM)작물의 활용이 제시되고있다. 따라서 선진국들은 이의 기반이 되는 식물유전체 연구에 대규모 투자를 아끼지 않고 있으며, 이를 이 용한 식물 생명공학산업을 국가 전략 산업으로 집중 육성하고 있다. GM작물 제조 기술은 유용 유전자의 발굴 및 재조합, 식물세포로의 이식 및 재분화를 통한 완전한 식물체 재생, 이를 품종으로 실용화하는 단계로 구성되어 있다. GM작물은 1983년 항생제 저항성 담배가 개발된 것을 시점으로 하여, 1994년에는 연화지 연 토마토 Flaver Saver이후 지금까지 개발 실용화된 작물은 제초제 저항성 콩, 카놀라, 목화, 그리고 해충 저항성 옥수수 등이 있으며,2001년까지 세계적으로 상품화 승인을 얻은 경우는 15 작물 68품종에 이른다. 2001년 경우 GM작물 종자시장은 약 30억 달러에 달하고 있으며, 미국, 아르헨티나, 캐나다 등 세계적으로 52.6백만 ha에 이르는 면적에서 재배되었다. 그러나 GM농산물의 식품 및 환경 안전성에 대한 의구심이 일기 시작하였고, 따라서 이의 생산 및 소비에 대한 전반적 인 문제가 뜨거운 쟁점으로 부각되기도 하였다. 이 에 각국 정부는 객관적 인 안전성을 확보하기 위한 제도적인 장치를 마련하고 있으며, 아울러 과학기술자들은 더욱 안전한 형질전환 기술 개발을 도모하고 있다. 다음 세대의 GM작물은 단순한 제초제 및 병해충 저항성을 넘어서서 특정 영양 또는 건강기능성을 향상시켜 부가가치를 증가시킨 신품종 맞춤작물이 지속적으로 개발 상업화될 것이다. 따라서 고유성을 가진 유용 유전자의 대량 확보 여부가 산업적 경쟁력을 결정하게 될 것이다. 지금까지 개별 유전자 중심으로 이루어지던 유용 유전자 발굴 작업은 유전체학의 출현으로 규모가 대량화되고 그 효율이 증진되었다. 따라서 진 각국은 유용 유전자 발굴에 국가적 차원의 역량을 집중하고 있다. 그러나 우리나라는 정부와 민간의 소규모 지원으로 근근히 기술 습득 차원에 머물러 왔으며, 산업적 경쟁력의 무기가 될 고유한 유용 유전자와 형질전환 기술이 거의 없는 어려운 상황에 놓여 있다. 최근 정부가 시작한 생명공학 분야 대규모 연구지원 사업 기대를 모아 보며 이 분야 과학기술자들의 노력을 촉구한다.

  • PDF

The Occurrence of Ophiobolus graminis Sacc. of Wheat and Barley in Korea (맥류 마름병(Ophiobolus graminis Sacc.)의 발생에 대하여)

  • Chung B. J.;Sung J. M.;Kim K. S.;Sung K. S.
    • Korean journal of applied entomology
    • /
    • v.17 no.1 s.34
    • /
    • pp.49-51
    • /
    • 1978
  • The 'take-all' disease of wheat was first reported in Korea in 1947. Ophiobolnis graunis was isolated again from wheat and barley in 1976 and 1977. In 1977, perithecia of Ophiobolus were found on stems of rice, wheat and corn. Perithecia were formed on recommend varieties of wheat in the greenhouse as a result of artificial inoculation of mycelia into the soil. During 1977, Take-all of wheat and barley was quite severe. The result of survey made during this showed about 5 percent that the disease was present in Suweon, Daejeon, Yesan and Yongin. The Take-all infection causes remarkable decrease in the average weight of the grain, followed by a reduction in the number of tillers per plant and amount of gram per ear.

  • PDF

Genetic Analysis on the Bacterial Blight Resistance Gene from a Wild Relative, Oryza minuta (야생벼 Oryza minuta에서 유래한 수원506호의 흰잎마름병 저항성유전자에 대한 고찰)

  • Jeung, Ji-Ung;Roh, Tae-Hwan;Kang, Kyung-Ho;Shin, Young-Seop;Kim, Yeon-Gyu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.2
    • /
    • pp.124-133
    • /
    • 2011
  • Bacterial blight (BB), cuased by the vascular pathogen Xanthomonas oryzae pv. oryzae, is one of the major threats in rice fields worldwide. In Korea, two resistance genes against BB, Xa1 and Xa3 had been intensively used for developing high quality japonica rice cultivars. Those traditional resistance sources have being rapidly ified by the adopting of BB pathogen through mutations of the corresponding avr-genes, such as K3a exhibiting high compatibility to both Xa1 and Xa3. To expanding genetic resource against BB in Korea, the Suweon506, an introgression line between a Korean japonica cultivar, Hwaseong and a wild relative, Oryza minuta, was be subjected for genetic analysis owing to the BB resistance. Through association analyses between the pathotyping and genotyping results for each $F_2$ progenies, derived from a cross between Suweon506 and a Tongil type cultivar, Milyang23, a major resistant dominant gene is localized on the subterminal region of rice chromosome 4, where at least three BB resistancde genes, Xa1, Xa2, and Xa22, were reported previously.

Effect of Cultivars, Sowing Date and Cropping System on the Development of Soybean Bacterial Pustule in the Field (콩 품종, 파종시기 및 작부체계가 콩 불마름병 발생에 미치는 영향)

  • Hong, Sung-Jun;Kim, Yong-Ki;Shim, Chang-Ki;Kim, Min-Jeong;Park, Jong-Ho;Han, Eun-Jung;Jee, Hyeong-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.4
    • /
    • pp.773-787
    • /
    • 2014
  • Bacterial pustule of soybean caused by Xanthomonas axonopodis pv. glycines is one of the most prevalent bacterial diseases in many areas where soybeans are grown. This study was carried out to evaluate the effect of cultivars, sowing date and cropping system on the suppression of soybean bacterial pustule in the field. One hundred soybean cultivars were screened for disease resistance against bacterial pustule in naturally infested field. Among them, fourteen cultivars including 'Pureun' were found to be high resistant. And thirty cultivars showed to be moderate resistant(less than 3% of diseased leaf area). When Soybean cultivar 'Taekwang' were sown in four different dates, May 25, June 5, June 15, and June 25, at 10 day-interval in Milyang, the diseased leaf area of bacterial pustule was 23.3%-25.7%, 14.7%-18.0%, 10.7%-12.8%, and 1.0%-2.7%, respectively. The lowest percentage of diseased leaf area was recorded in the plots sown on June 25, whereas the highest percentage of diseased leaf area was recorded in the plot sown on May 25. As sowing time was delayed, incidence of soybean bacterial pustule found to be comparatively reduced. From December in 2006 to June in 2007, we surveyed the pathogen population of soybean bacterial pustule in five cropping upland soils where soybean was cultivated. The survey result showed the bacterial pustule pathogens were detected from the all cropping soils. The pathogen populations of soybean bacterial pustule in soybean-barley and soybean-garlic cropping soil were significantly lower than that of the other cropping soils. In addition, the incidence of soybean bacterial pustule was decreased under the two cropping systems.

Genetic Analysis on the Bacterial Blight Resistance of Suweon497, a Rice Breeding Line Developed through Wide Hybridization (벼 종간교잡 후대계통 '수원497호'의 흰잎마름병 저항성에 대한 유전분석)

  • Jeung, Ji Ung;Roh, Tae Hwan;Kang, Kyung Ho;Jeong, Jong Min;Kim, Myeong Ki;Kim, Yeon Gyu
    • Korean Journal of Breeding Science
    • /
    • v.43 no.1
    • /
    • pp.81-91
    • /
    • 2011
  • Rice wild relatives have been recognized as reservoirs of genetic reinforcements to improve cultivating rice against biotic and abiotic stresses. A wild relative, Oryza. minuta(BBCC; Acc. 101141), was hybridized with a Korean Japonica cultivar, 'Hwaseong'(AA), followed by ovule culture and several times of back crossings to overcome high level of sterility. During evaluation of the introgression lines, breeding line exhibited resistance to bacterial blight with reasonable agronomic performances, and nominated as an elite breeding line, the 'Suweon497'. A mapping population, to dissect genetic basis of the resistance, was constructed by using $F_2$ progenies of the 'Suweon497' ${\times}$ 'Milyang23'. Association analysis between SSR marker genotypes and pathogenisity levels of each $F_2$ progeny revealed the end terminal region of rice chromosome 11 as the nesting place for the wild rice derived bacterial blight resistance gene, where at least four other genes, Xa3, Xa4, Xa26 and Xa31, have been reported.

Development of Basic Research for Establishing the Apple IPM System in Korea: Dr. Lee Soon-Won's Research Case (한국형 사과 병해충종합관리(IPM) 체계 수립을 위한 기초연구의 전개: 이순원 박사의 연구 사례)

  • Ahn, Jeong Joon;Oh, Hyeonseok;Choi, Kyung San;Choi, Kyung-Hee;Do, Yun-Su;Lee, Sun-Young;Lee, Dong-Hyuk
    • Korean journal of applied entomology
    • /
    • v.60 no.1
    • /
    • pp.1-13
    • /
    • 2021
  • The concept of integrated pest management (IPM) first developed in the 1950s, and the concept of economic control via pest management was established in the 1960s. Research on IPM began in the United States and Europe, and IPM studies in Korea started with citrus insects and paddy field pests following the distribution of high-yield varieties of rice. Apple IPM in Korea began with research on pest control using chemical pesticides and pesticides resistant to insect pests, studies on the ecology of insect pests and their natural enemies, and the exploitation of sex pheromones on insect pests. Since the 1990s, IPM research and field projects have been carried out simultaneously for farming households. In the 2000s, the development of pest monitoring and forecasting models centered on mating disturbances, database programs for pests, and networks for sharing information. IPM technology has expanded via the development of unmanned forecasting systems and automation technologies in the 2010s.

Resistance Resources for the Foxglove Aphid in Soybeans (콩에서 흡즙해충 싸리수염진딧물 저항성 자원의 발굴)

  • Koh, Hong-Min;Park, Sumin;Kim, Kyung Hye;Kim, Ji Min;Lee, Taeklim;Heo, Jinho;Lee, Ju Seok;Jung, Jinkyo;Kang, Sungteag
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.3
    • /
    • pp.257-264
    • /
    • 2018
  • The recent global climate change induced the drought, flooding, and insect pest outbreaks. These caused the severe damage to crop yield in the domesticated field and occurrence change of insect pest species. The sap-sucking insect pest, aphids are common in soybean [Glycine max (L.) Merr.] and cause serious yield losses. Thus, developing resistance cultivars is promising and efficient strategy to prevent the significant yield losses by aphid and screening germplasm is the essential procedure to achieve this goal. We tried to establish a resistance test indicator for foxglove aphid, Aulacorthum solani (Kaltenbach), in soybean and found that plant damage degree or infested plant damage is most suitable one. Also we screened around 1,200 of soybean germplasm including wild and cultivated species for its resistance to foxglove aphid from the various origins, and 67 soybeans, including PI 366121, showed antixenosis resistance, 31 germplasms among 67 antixenosis germplasms were showed antibiosis to foxglove aphid with non-choice test. The identified foxglove aphid resistant soybean resources showed significantly low rate in survival test. Furthermore, resistance type, (i.e., antibiosis or antixenosis) of each candidate were varied. In this research, we established the screening index for foxglove aphid resistance in soybean, and identified the resistance varieties. This result could be useful resources in breeding for new foxglove aphid resistance soybean cultivars, and provide fundamental information to investigate the resistance mechanism in soybean.

Pathogen, Insect and Weed Control Effects of Secondary Metabolites from Plants (식물유래 2차 대사물질의 병충해 및 잡초 방제효과)

  • Kim, Jong-Bum
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.1-15
    • /
    • 2005
  • Pathogens, insects and weeds have significantly reduced agricultural productivity. Thus, to increase the productivity, synthetic agricultural chemicals have been overused. However, these synthetic compounds that are different from natural products cannot be broken down easily in natural systems, causing the destruction of soil quality and agricultural environments and the gradually difficulty in continuous agriculture. Now agriculture is faced with the various problems of minimizing the damage in agricultural environments, securing the safety of human health, while simultaneously increasing agricultural productivity. Meanwhile, plants produce secondary metabolites to protect themselves from external invaders and to secure their region for survival. Plants infected with pathogens produce antibiotics phytoalexin; monocotyledonous plants produce flavonoids and diterpenoids phytoalexins, and dicotylodoneous plant, despite of infected pathogens, produce family-specific phytoalexin such as flavonoids in Leguminosae, indole derivatives in Cruciferae, sesquitepenoids in Solanaceae, coumarins in Umbelliferae, making the plant resistant to specific pathogen. Growth inhibitor or antifeedant substances to insects are terpenoids pyrethrin, azadirachtin, limonin, cedrelanoid, toosendanin and fraxinellone/dictamnine, and terpenoid-alkaloid mixed compounds sesquiterpene pyridine and norditerpenoids, and azepine-, amide-, loline-, stemofoline-, pyrrolizidine-alkaloids and so on. Also plants produces the substances to inhibit other plant growths to secure the regions for plant itself, which is including terpenoids essential oil and sesquiterpene lactone, and additionally, benzoxazinoids, glucosinolate, quassinoid, cyanogenic glycoside, saponin, sorgolennone, juglone and lots of other different of secondary metabolites. Hence, phytoalexin, an antibiotic compound produced by plants infected with pathogens, can be employed for pathogen control. Terpenoids and alkaloids inhibiting insect growth can be utilized for insect control. Allelochemicals, a compound released from a certain plant to hinder the growth of other plants for their survival, can be also used directly as a herbicides for weed control as well. Therefore, the use of the natural secondary metabolites for pest control might be one of the alternatives for environmentally friendly agriculture. However, the natural substances are destroyed easily causing low the pest-control efficacy, and also there is the limitation to producing the substances using plant cell. In the future, effects should be made to try to find the secondary metabolites with good pest-control effect and no harmful to human health. Also the biosynthetic pathways of secondary metabolites have to be elucidated continuously, and the metabolic engineering should be applied to improve transgenics having the resistance to specific pest.