• Title/Summary/Keyword: 병용계

Search Result 111, Processing Time 0.028 seconds

The Study for the Air Bubble Deterioration of Combined High Flowing Self-Compacting Concrete (병용계 고유동 자기충전콘크리트의 기포저감을 위한 연구)

  • Choi, Yun-Wang;Kim, Kyung-Hwan;Ruy, Deug-Hyun;Jeong, Jae-Gwon;Kang, Hyun-Jin;Lee, Jae-Nam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.449-452
    • /
    • 2008
  • This study is to manufacture HSCC (High flowing Self-Compacting Concrete) be able to construction without vibration & hardening, and it is stable according to the change of the surface number of aggregate and to examine the factor of reduction occurred before after hardening through the indoor experiment. It is essential to use of the thickener to increase the viscosity in the combined HSCC. In this result, it make more bubbles than HSCC of pulverulent body. The result of study has shown, through the surface air bubble by not passed air bubbles within concrete after hardening, It has bad effect in not only appearance of structures but strength & duration. It is the experiment for air bubble of concrete according to the types of aggregate (fine aggregate), mixing time of concrete, exfoliation, material of model form and so that reduce the air bubble of combined HSCC. Experiments have shown, the effect of exfoliation was bigger than the effect of form for the performance of surface finishing of combined HSCC after hardening according to the exfoliation or material of model form and the opaque guris has good condition of finishing.

  • PDF

An Experimental Study on the Rheological Properties of the Combined Self-Compacting Concrete by Quality Variations (품질변동에 따른 병용계 자기충전 콘크리트의 유동특성에 관한 실험적 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.277-285
    • /
    • 2014
  • The purpose of this study is to investigate experimentally the variation factors range having influence on the rheological properties of the combined self-compacting concrete according to materials quality, weighting error and site conditions. Two types cement (blast-furnace slag cement and belite cement), lime stone powder as binder and the optimum mix proportions in the preceded study are selected for this study. Also, variations for sensitivity test are as followings; (1) Concrete temperature 3 cases (2) Surface moisture of sand 5cases (3) Fineness modulus of sand 5cases (4) Specific surface of lime stone powder 3cases (5) Dosage of chemical admixture 5cases. Slump flow ($650{\pm}50mm$), 500 mm reaching time (($7{\pm}3sec$), V-type flowing time ($15{\pm}5sec$) and U-box height (min. 300 mm) are tested for sensitivity. As test results, the variations range for quality control are as followings. (1) Concrete temperature; $10{\sim}20^{\circ}C$(below $30^{\circ}C$) (2) Surface moisture of sand; $base{\pm}0.6%$ (3) Fineness modulus of sand; $2.6{\pm}0.2$ (4) Dosage of chemical admixture; $base{\pm}0.2%$ (5) Specific surface of lime stone powder $6000cm^2/g$. Compared with two types cement including based belite cement (binary type) and based slag cement (ternary type), the combined self-compacting concrete used belite cement type is most stable in the quality control because of high contents for lime stone powder and $C_2S$. It is to propose a control scheme of the combined self-compacting concrete in the actual construction work.

Flowability Properties of Combined High Flowing Self-Compacting Concrete to the Addition of Viscosity Agent (증점제 첨가량 변화에 따른 병용계 고유동 자기충전 콘크리트의 유동특성)

  • Choi, Yun-Wang;Jeong, Jae-Gwon;Eom, Joo-Han;Choi, Wook;Kim, Kyung-Hwan;Moon, Dae-Joong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.369-372
    • /
    • 2008
  • In this research experimentally analyzes the flow characteristics of a combined High flowing Self-Compacting Concrete of which the viscosity agent and defoaming agent addition amount are changed, to make the combined High flowing Self-Compacting Concrete that can secure the required flow performance and air amount. As a result of the experiment, the slump flow of the combined High flowing Self-Compacting Concrete added with viscosity agent increases when the viscosity agent addition amount is 0.2%(${\times}$W %). When viscosity agent addition amount increases, viscosity agent shows that it largely deviates from the regulation value in the flow time of V-funnel, which is presented in the JSCE standards (grade 2). Also, all mixtures, except for mixtures added with viscosity agent, defoaming agent, and AE agent, do not meet a target air amount $4.5{\pm}1.5%$. High flowing Self-Compacting Concrete mixtureadded with defoaming agent shows that although time passes after its first mixture, its air amount reduces a little. Based on the experiment, we can know an optimal polymer amount to obtain the required flow performance

  • PDF

Optimum Mix Proportion and Characteristics of the Combined Self Compacting Concrete according to Cement Types (시멘트 종류에 따른 병용계 자기충전 콘크리트의 최적배합비와 특성)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.55-64
    • /
    • 2009
  • This study is aimed to derive the optimum mix proportion of the combined self compacting concrete according to cement types (blast-furnace slag cement and belite cement) and to propose the basic data to field construction work after evaluating the quality properties. Specially, lime stone powder (LSP) as binder and viscosity agent are used in the combined self compacting concrete because slurry wall of an underground LNG storage tank should be kept stability of quality during concrete working. Replacement ratio of LSP is determined by confined water ratio test and main design factors including fine aggregate ratio ($S_r$), coarse aggregate ratio ($G_v$) and water-cement ratio (W/C) are selected. Also, quality properties including setting time, bleeding content, shortening depth and hydration heat on the optimum mix proportion of the combined self compacting concrete according to cement type are compared and analyzed. As test results, the optimum mix proportion of the combined self compacting concrete according to cement type is as followings. 1) Slag cement type-replacement ratio of LSP 13.5%, $S_r$ 47% and W/C 41%. 2) Belite cement type-replacement ratio of LSP 42.7%, Sr 43% and W/C 51%. But optimum coarse aggregate ratio is 53% regardless of cement types. Also, as test results regarding setting time, bleeding content, shortening depth and hydration heat of the combined self compacting concrete by cement type, belite cement type is most stable in the quality properties and is to apply the actual construction work.

A Study on the Estimation for the Guaranteed Strength and Construction Quality of the Combined High Flowing Concrete in Slurry Wall (지하연속벽용 병용계 고유동 콘크리트의 시공 품질 및 보증강도 평가에 관한 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.811-817
    • /
    • 2006
  • The primary purpose of this study is to estimate the guaranteed strength and construction quality of the combined high flowing concrete which is used in the slurry wall of underground LNG storage tank. The required compressive strength of this type of concrete become generally known as a non economical value because it is applied the high addition factor for variation coefficients and low reduction factor under water concrete. Therefore, after estimation of the construction quality and guaranteed strength in actual site work, this study is to propose a suitable equation to calculate the required compressive strength in order to improve its difference. Application results in actual site work are shown as followings. The optimum nix design proportion is selected that has water-cement ratio 51%, sand-aggregate ratio 48.8%, and replacement ratio 42.6% of lime stone powder by cement weight. Test results of slump flow as construction quality give average 616~634mm. 500mm flowing time and air content are satisfied with specifications in the rage of 6.3 seconds and 4.0% respectively. Results of strength test by standard curing mold show that average compressive strength is 49.9MPa, standard deviation and variation coefficients are low as 1.66MPa and 3.36%. Also test results by cored cylinder show that average compressive strength is 66.4MPa, standard deviation and variation coefficients are low as 3.64MPa and 5.48%. The guaranteed strength ratio between standard curing mold and cored cylinder show 1.23 and 1.32 in the flanks. It is shown that applied addition factor for variation coefficients and reduction factor under water concrete to calculate the required compressive strength is proved very conservative. Therefore, based on these results, it is proposed new equation having variation coefficients 7%, addition factor 1.13 and reduction factor 0.98 under water connote.

The Component and Statistical Analyses of Early-Joseon Metal Types in National Museum of Korea (국립중앙박물관 소장 조선 전기 금속활자의 조성성분과 통계분석)

  • Shin, Yong Bi;Huh, Il Kwon;Lee, Su Jin
    • Conservation Science in Museum
    • /
    • v.28
    • /
    • pp.89-108
    • /
    • 2022
  • Among about 500,000 characters in metal types in National Museum of Korea, this study conducts a statistical analysis of 62 metal types from the early Joseon Dynasty, including 33 gabinja (甲寅字) types and 29 eulhaeja (乙亥字) Hangeul types by examining the shape, measuring the specific gravity, and identifying the components based on previously-studied Joseon metal types. Among them, 33 gabinja types and 24 eulhaeja types were made of two-component bronze (copper and tin) (Group A), and four eulhaeja types were produced with three-component bronze (copper, tin and lead). (Group B), and one eulhaeja type was created with two-component bronze (copper and tin) with a high tin content (Group C). By comparing with imjinja (壬辰字) types of the late Joseon Dynasty based on multiple statistical analyses of type components, this study confirms that late-Joseon types have low copper content and high zinc and lead content, and therefore it may be possible to distinguish between the types of early and late Joseon Dynasty.