본 연구에서는 CUDA(Compute Unified Device Architecture) 포트란을 이용하여 확산파 강우 유출모형을 개발하였다. CUDA 포트란은 그래픽 처리 장치(Graphic Processing Unit: GPU)에서 수행하는 병렬 연산 알고리즘을 포트란 언어를 사용하여 작성할 수 있도록 하는 GPU상의 범용계산(General-Purpose Computing on Graphics Processing Units: GPGPU) 기술이다. GPU는 그래픽 처리 작업에 특화된 다수의 산술 논리 장치(Arithmetic Logic Unit: ALU)로 구성되어 있어서 중앙 처리 장치(Central Processing Unit: CPU)보다 한 번에 더 많은 연산 수행이 가능하다. 이에 따라, CUDA 포트란기반 확산파모형은 분포형 강우유출모형의 수치모의 연산시간을 단축시킬 수 있다. 분포형모형의 지배방정식은 확산파모형과 Green-Ampt모형으로 구성되었고, 확산파모형은 유한체적법을 이용하여 이산화 하였다. CUDA 포트란기반 확산파모형의 정확성은 기존 연구된 수리실험 결과 및 CPU기반 강우유출모형과 비교하였으며, 연산소요시간에 대한 효율성은 CPU기반 확산파모형과 비교하였다. 그 결과 CUDA 포트란기반 확산파모형의 결과는 수리실험 결과 및 CPU기반 강우유출모형의 결과와 유사한 결과를 나타냈다. 또한, 연산소요시간은 CPU 기반 확산파모형의 연산소요시간보다 단축되었으며, 본 연구에 사용된 장비를 기준으로 최대 100배 정도 단축되었다.
멀티미디어 기술의 급속한 발전과 사용자의 대형 화면에 대한 선호도가 높아지는 가운데 새로운 영상 압축 기술인 HEVC(High Efficiency Video Coding) 고화질 영상 압축 표준을 탄생시켰으며, 그 결과 기존의 HD급 영상보다 4배 이상, 16배까지 선명한 초고화질 UHD(Ultra High Definition) 영상 서비스가 새롭게 주목받고 있다. 또한 JPEG 2000 압축도 기존 처리되던 픽셀 이미지를 넘어 초고화질 해상도 이미지(4K : $3,840{\times}2,160$ 또는 8K : $7680{\times}4320$)를 처리 지원을 하고 있다. 따라서 초고화질 이미지의 획득 및 저장을 위해서는 고속의 처리 기술이 필요하다. 이에 본 논문은 초고화질 해상도 이미지의 고속 처리를 위한 병렬처리 기술에 대한 연구를 위하여, JPEG 2000의 처리 과정을 살펴보고 전처리 단계인 색공간 변환 알고리즘 적용을 위하여 GPU환경에서 병렬 컴퓨팅을 통해 처리속도를 향상시키는 방법을 제안한다. 병렬화한 알고리즘의 구현은 OpenCL(Open Computing Language)을 이용하였다. 실험 결과 사용자 정의 쓰레드 기반 고속 처리와 비교하여 초고화질 해상도 이미지(UHD 4K : $3,840{\times}2,160$)를 기준으로 최대 5배의 성능 향상의 결과를 보여주었다.
Cardiac electrophysiology studies often use simulation to predict how cardiac will behave under various conditions. To observe the cardiac tissue movement, it needs to use the high--resolution heart mesh with a sophisticated and large number of nodes. The higher resolution mesh is, the more computation time is needed. To improve computation speed and performance, parallel processing using multi-core processes and network computing resources is performed. In this study, we compared the computational speeds of CPU parallelization and GPU parallelization in virtual heart simulation for efficiently calculating a series of ordinary differential equations (ODE) and partial differential equations (PDE) and determined the optimal CPU and GPU parallelization architecture. We used 2D tissue model and 3D ventricular model to compared the computation performance. Then, we measured the time required to the calculation of ODEs and PDEs, respectively. In conclusion, for the most efficient computation, using GPU parallelization rather than CPU parallelization can improve performance by 4.3 times and 2.3 times in calculations of ODEs and PDE, respectively. In CPU parallelization, it is best to use the number of processors just before the communication cost between each processor is incurred.
디지털 빅데이터 시대가 도래함에 따라 다양한 분야에서 하둡 플랫폼이 널리 사용되고 있지만, 하둡 맵리듀스 프레임워크는 대량의 작은 파일들을 처리하는데 있어서 네임노드의 메인 메모리와 맵 태스크 수가 증가하는 문제점을 안고 있다. 또한, 맵리듀스 프레임워크에서 하드웨어 기반 데이터 병렬성을 지원하는 GPU를 활용하기 위해서는 C++ 언어 기반의 태스크를 맵리듀스 프레임워크에서 수행하기 위한 방식이 필요하다. 따라서, 본 논문에서는 이미지 빅데이터를 처리하기 위해 하둡 플랫폼 환경에서 이미지 시퀀스 파일을 생성하고 하둡 파이프를 이용하여 GPU 기반의 얼굴 검출 태스크를 맵리듀스 프레임워크에서 처리하는 얼굴 검출 시스템을 제시하고 단일 CPU 프로세스 대비 약 6.8배의 성능 향상을 보여준다.
잡음이 있거나 해상도가 낮은 의료 영상의 화질을 개선하기 위해 다양한 필터를 적용한다. 이것은 환자의 방사선 피폭량을 줄이고, 기존에 사용하던 영상 촬영기기의 활용도를 높이기 위해 반드시 필요한 작업이다. 기존 방법에서는 PC의 CPU를 이용하여 필터링하는 것이 일반적이었다. 하지만 병원에서 사용하는 PC의 CPU 성능만으로는 해상도가 높은 인체 영상에 각종 연산 및 필터를 적용하여 실시간으로 결과를 만들어 내기는 어렵다. 본 논문에서는 CPU 안에 탑재되어 있는 인텔 내장 GPU의 구조와 성능을 분석하고 이를 기반으로 하여 OpenCL 병렬처리 기능을 적용한 영상 필터링을 수행하는 방법을 제안하였다. 이를 통해 의료 영상에 높은 연산량을 가지는 복잡한 필터를 적용하여 고화질의 결과물을 실시간에 생성할 수 있도록 하였다.
본 논문에서는 Grabcut 알고리즘의 수행 속도를 효율적으로 개선시키기 위하여 GPU(Graphics Processing Unit)에서 데이터를 처리하는 방법을 제안한다. Grabcut 알고리즘은 뛰어난 성능의 객체 추출 알고리즘으로 기존의 Grabcut 알고리즘은 전경 영역과 배경 영역을 분할한 후 배경 K-클러스터와 전경 K-클러스터로 할당한다. 그리고 할당 된 결과를 점진적으로 개선될 때까지의 과정을 반복한다. 하지만 Grabcut 알고리즘은 반복된 클러스터링 작업으로 인하여 수행 시간이 오래 걸리는 단점이 존재한다. 따라서 GPGPU(General-Purpose computing on Graphics Processing Unit)를 이용해 반복되는 작업을 병렬적으로 처리하여 Grabcut 알고리즘의 수행 속도를 효율적으로 개선시키는 방법을 제안한다. 제안하는 방법으로 Grabcut 알고리즘의 수행시간을 평균 약 90.668% 감소시켰다.
GPGPU는 원래 그래픽 계산을 위한 프로세서인 GPU를 일반 계산에 활용하여 저전력으로 고성능의 효율을 보이는 신개념의 계산 장치이다. 본 논문에서는 GPGPU에서 계산을 하기 위한 병렬 LU 분해법의 알고리즘을 제안하였다. Nvidia GPGPU에서 프로그램을 실행하기 위한 CUDA 계산 환경에서는 계산하고자 하는 데이터 도메인을 블록으로 나누고 각 블록을 쓰레드들이 동시에 계산을 하는데, 이 때 블록들의 계산 순서는 무작위로 진행이 되기 때문에 블록간의 데이터 의존성을 가지는 LU 분해 프로그램에서는 결과가 정확하지 않게 된다. 본 논문에서는 병렬 LU 분해법에서 블록간의 계산 순서를 인위적으로 정하는 구현 방식을 제안하며 아울러 LU 분해법의 부분 피벗팅을 계산하기 위한 병렬 reduction 알고리즘도 제안한다. 또한 구현된 병렬프로그램의 성능 분석을 통하여 GPGPU의 멀티 쓰레드 기반으로 고성능으로 계산할 수 있는 병렬프로그램의 효율성을 보인다.
본 논문에서는 다수의 회전 이미지를 생성, 이용해 결과의 다양성을 추구하고 기존 기법들의 문제인 예제 가장자리 경계면의 Neighborhood를 이용해 생기는 경계선을 완화한 합성 결과물을 생성하는 새 예제 기반 텍스처 합성 방법을 제안한다. 논문에서 제안하는 방법은 구현하기에 따라 공간 결정적인 형태로 구축할 수 있으며 병렬 처리가 가능한 하드웨어를 이용한 병렬 연산처리로 합성 속도 가속을 하는데도 유리한 구조를 가지고 있다.
본 논문에서는 VR 영상의 스티칭을 위한 특징점 추출 방식의 하나인 SIFT 알고리즘의 고속화 방법을 제안한다. 이 방법은 SIFT 의 각 단계 모두에 최적화 방법을 적용하여 CPU 에 최적화된 알고리즘을 구축하였다. 그리고 비독립적인 과정들로 이루어진 SIFT 특징점 추출 연산을 병렬화하기 위한 방법으로, 영상 분할 방법을 제시하며 SIFT 의 새로운 병렬화 방법을 제안한다. 특히 최적화 과정을 통해 Scale-space Extrema Detection 과 Orientation Assignment 과정에서 큰 시간 단축 효과를 보여 총 75.5%의 시간을 단축하였다. 이를 OpenMP 와 영상 분할 방법을 활용한 CPU 병렬화로 FullHD($1920{\times}1080$)해상도 영상에서 약 4000 개의 특징점을 추출하는 데 평균 91ms 의 성능을 보이며 기존 GPU 고속화 논문 대비 약 30%의 성능 개선 효과를 보였다.
국방 분야에서 무인 차량의 주행로는 포장 도로 뿐만 아니라, 자주 다양한 변화를 갖는 야지의 비포장 도로 등이 포함된다. 이 무인 차량은 주로 험지나 오지에서 감시 및 정찰, 진지 방어 등을 수행하므로 자율 주행을 위해서 예측하지 못했던 다양한 주행로와 환경을 수시로 접하게 되며, 이에 따라 추가 학습이 필요하다. 본 논문에서는 'Forgetting' 문제를 피하면서 거리 비교와 Class 비교를 통해 빠르게 추가 학습이 가능하도록 Approximate Nearest Neighbor를 수정한 GPU 기반 Additional Learning Nearest Neighbor(ALNN) 알고리즘을 제안한다. 또 ALNN 알고리즘은 학습 데이터가 누적될수록 연산 속도가 저하되는 문제가 있고, 본 연구에서는 OpenGL Shading Language 기반의 GPU 병렬 처리를 사용하여 이를 해결하였다. ALNN 알고리즘은 기존의 학습 데이터에 영향을 주지 않으면서 빠르게 추가 학습이 가능하여, 빈번히 실시간으로 재학습이 필요한 국방 등의 분야에 활용될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.