FE 2 A0

Vol, 15, No, 1, P, 17~23

e ek
{frdlanve, chkim} @korea.ac kr

Parallel Rotated Exemplar-based Texture Synthesis

Han-Wook Park®

Chang-Hun Kim

Korea University

8 of

RN k) B ol n| A A4, ol &8 Fte
1 2] Neighborhood £ o] &3] A 7= 4 741’8 < %s)el g
o =@l A A dEte Ee @S e wet 37 2%

9. rdh 2, rfz

T

ChEAE 25
J 345t

=
S
= ol " A F/’]E T4 S5 158 fedE &

E7)HEY EAY oA 7hgAke 4
A oA ZINE Ea A g RS A
‘)}'_

ow. e Aozt b5 s

ie]
=2
253
9l 9

pa)

=

98 728 A2 ok,

Abstract

We present a simple new idea to improve the quality of exemplar based texture synthesis using multiple rotated input exemplars.
Our algorithm successfully obtain rotational synthesis feature variations and manages to reduce the artifacts in the results, es-
pecially patch seams due to the structure of the exemplars provided which have been inappropriate for previous neighborbood
matching synthesis algorithms. Our algorithm is parailel in nature, thus it is possible to implement our algorithm using GPU or

multi-core CPU to accelerate synthesis process.

A9 Hax T4, 53 oA o)A, g4 ot

Keywords: texture synthesis, romtui exemplar, synthesis variation

1 Introduction

Exemplar-based texture synthesis produces a texture of arbitrary
size which is visually similar to the given input exemplar. Tex-
ture synthesis can be very useful to provide more detailed surface
textures for large objects or terrain, with limited size of texture sup-
plies, or to introduce user control to the given input texture image
to provide an interface to design a texture, Generally a texture syn-
thesis algorithm is preferable if the algorithm can produce a result
which is aperiodic, infinite, and visually similar to the provided
mput with no or little texture artifacts. Recent texture synthesis
algorithms managed to provide a result of good quality which is
infinite, spatially deterministic, aperiodic which is fast enough by
using parallel processors such as GPU.

However, despite of these technological improvements there still
are some unresolved problems in texture synthesis. One of such
problem is repetition in the synthesis product. There were vari-
ous attempts to eliminate periodical repetitions, like forcing spa-
tial distribution of designated texture feature, or applying muitiple
perturbations to the result to introduce fine scale variations. Still,
even if these methods prevent periodical synthesis result, the syn-
thesis product will show nearly same but slightly different texture

features all over the image. Since there are no way to alter an
image feature completely this is quite unavoidable, thus most tex-
ture synthesis algorithms suggest various methods to alter feature
structures to provide more variation. Also, there are some tex-
tures which are not very appropriate to be used for an exemplar for
conventional texture synthesis algorithms. These textures gener-
ally are not toroidal, and may have large structural or color inten-
sity difference along the border transitions when tiled. Since it is
hard to find appropriate transitional patch to expand border areas
of these textures, there can be texture seams in the synthesized re-
sult as shown in Fig. 1. We propose a new simple idea to reduce
these problems by generating multiple rotated exemplar images to
improve feature variety and reduce patch seam artifacts.

2 Related work

The goal of exemplar-based texture synthesis is to use given in-
put exemplar as much as possible to produce a visually similar
image. A kind of approach to achieve the goal is iteratively op-
timizing number of overlapping patches. In patch optimization
approach, an algorithm will repeatedly cut-and-paste a patch of
random size to reduce overall patch overlapping errors using dy-

- 17 -

Fig. 1: A synthesis result using the algorithm of Lefebvre et al
2005[5] with a texture exemplar which has grear difference along
the edges of the image.

namic programming{2] or Graphcut{4]. Although it is good to
say the algorithms using patch optimization approach will result
above average quality since it pastes a collection of pixels instead
of pixel by pixel, patch optimization algorithms are hard to avoid
repetitive texture features because it is hard to introduce fine scale
feature variations to the image being synthesized. One other ap-
proach is neighborhood matching, which fetches a neighborhood
around a pixel and finds the best matching exemplar neighborhood
to rewrite the pixel in sequential order, or individually. This ap-
proach is especially good to introduce fine scale variations by dis-
torting the resulting image a bit during synthesis process, but have
some possibility that the result may has some broken structures. It
is also good to enforce some constraints over the result, like giv-
ing a designed color control image[1]. Hertzmann et al{3] used a
pair of images to achieve some effects like super-resolution, texture
transfer, artistic filtering. Zhang et al[10] used binary texton masks
to deform and make a transition between two textures. Also, by
rewriting each pixel individually, a number of algorithms[9, 5, 6]
could be implemented with paraliel processors such as GPU, to
drastically reduce synthesis time. Recently, there was a new ap-
plication of exemplar-based texture synthesis, which synthesizes
a smaller exemplar which best represents the given input texture,
which considers orientations of anisotropic textures[7].

3 Synthesis overview

Our goal is to produce an image of arbitrary size which is visually
similar to the given input exemplar while introducing some rota-
tional variations. To do this, we extend the algorithm introduced in
‘Parallel Controllable Texture Synthesis’[5] to provide some sup-
port for rotated input exemplars. For each synthesis pyramid 1, we
synthesis a coordinate image 8, which refers to the corresponding
exemplar pyramid E, by performing upsample, jitter, correction.

Upsample Upsample is a step which prepares a coordinate image
S, based upon the image S,_, which was generated by previous

step, doubling its coordinates.

Jitter Jitter is to prevent periodic synthesis result and give some
fine scale variations by perturbing the coordinate image S,.

Correction Correction step corrects the overall structure of the
image being synthesized by rewriting each pixel to new coordinate
which best matches to the pixel being matched. We use 57 sized
neighborhood to match neighborhoods.

4 Preprocessing

4.1 Preparing rotated exemplar images

We precompute all needed information beforehand to eliminate un-
necessary computational cost during actual synthesis step. To in-
troduce rotational variations to the synthesis result, we have to pre-
pare a number of rotated images for each pyramid level . The
number of exemplars to be generated is defined as imax, which is
typically 8 for our implementation. We put an index sequentially
to each rotated exemplar and denote them as E;.

i

E! = rotation(E,,0,), 0, =

i

- 360
imax

4y

While performing rotation for each exemplar, there are areas
which cannot be sampled from original input exemplar since the
location is out of the bound of the input. To fill the empty areas,
we sample the image as tiled texture for toroidal exemplar, or mir-
rored texture for non-toroidal exemplar.

After we produce a collection of rotated exemplars, we flag each
of the rotated images as ‘toroidal’ or ‘non-toroidal’. Even if the
given exemplar image was non-toroidal, the rotated image cannot
be guaranteed as toroidal after being rotated, thus we mark ev-
ery image which was not rotated with degrees of 90, 180, 270 as
non-toroidal. The images rotated with degrees of 90, 180, 270 are
toroidal, if the input image was. We perform this operation for ev-
ery pyramid level to prepare rotated image stacks from level 0 to
final level L.

4.2 Redefinition of coordinate image

Since we prepared number of rotated exemplar images for each
pyramid level, S,[p| have to refer to the pixel value of same level
exemplar B}, but conventional method to carry only x and y value
of the coordinate is not enough to redirect the coordinate to spec-
ified exemplar. Therefore, we add additional image index r to 3rd
channel of the coordinate image from the original 2 channel coor-
dinate image. Sometimes we have to refer to only x and y com-
ponent, or r component of the image. In this case, we denote each
as S¢[p| and S;[p|, thus getting a color value of location p will be-
come B "[S?[p]]. We show an example in Fig. 2. The upper left
image is input exemplar, and the image next to it is visualization
of the corresponding coordinate image in RGB channel. The third
image shows only r component of the coordinate image and the last
image is synthesis result image using coordinate image and input
exemplar.

- 18 -

Fig. 2: Visualization of coordinate images and its colorized result.
Two coordinate images are modified to fit into the range of 0 to 255
to be easily distinguished.

4.3 Candidate preparation

As introduced in Tong et al[8] and Lefebvre et al 2005[5}, we pre-
pare a finite number of synthesis candidates for each pixel of ro-
tated exemplar pyramid. This is very crucial step for our algorithm
as by preparing a candidate which has an index of rotated image
other than the image being prepared, our synthesizer can use neigh-
bors of other rotated image in same pyramid level during correction
step to obtain smooth transition between rotated features and im-
prove synthesis quality at the same time. For each rotated exemplar
image E;, The kth component of candidate for location w on Eis
denoted as Ci*(u). We search for total 3 candidates with min-
imal neighborhood matching error for each pixel in each rotated
exemplar pyramid by comparing its neighborhoods, using sum of
squared distance of neighbor vectors. Typically, the first candidate
searched will be in the same image, but we restrict the search to not
find a candidate on the same image being searched from the second
candidate and following ones to give more rotational variation to
the image being synthesized.

4.4 PCA Projection

To reduce dimension of the neighborhood to be matched, we em-
ploy principal component analysis as like Lefebvre et al 2005(5]
did. This can greatly reduce computational cost during correction
step. As shown in Lefebvre et al 2005(5], we first project 3 channel
RGB exemplar images to 2 channel, then cache its neighborhoods
to another images, projecting them to 6 channel from 50 dimen-
sion. However, this 6 channel image must preserve its transfor-
mation matrix to match neighborhoods during correction step, so
every rotated neighborhood images must have same projection ma-

trix. Therefore, we create a long strip from rotated images when
performing PCA projection to create a single projection matrix for
each level then split them into each rotated images afterwards.

5 Synthesis iteration

5.1 Initialization

Before getting into actual synthesis process, we have to initialize
the initial coordinate image S,. We assign 0 for each of all co-
ordinates for S;. However, to present rotated features we have to
assign different image index for each pixels for 8, thus we assign
arandom index value to each pixels, or if a user wants, we may as-
sign a specified value for specified pixel or initialize all pixels with
same specified value. If we assign all 0 to the image index values,
the result will be very similar to that of conventional neighborhood
matching texture synthesis algorithin as shown in Fig. 3. Stll, even
if we do so, the result can be very different if the given exemplar
has great difference along the edges when tiled. (See Sec. 6)

Fig. 3: The lefunost image is input exemplar. The image next to
it is a result initialized with random rotated image index values,
while the rightmost image is initialized with all 0.

5.2 Synthesis process

As mentioned in Sec. 3, we perform upsample, jitter, and correc-
tion for each level iteratively. In upsample step, we simply upsam-
ple the coordinates from the coordinate image of previous step. We
can do this by assigning four children coordinates of parent coor-
dinate from previous image to each pixel of the image of current
level.

Selop+ Al = (257, [p] + A) mod m
Sr2p+ Al =57]

Ae{(0.0- 0}

After performing upsample step, we perform jitter to give some
variations to the coordinate image by perturbing its coordinates.
We define a jitter function which produces a random value between
-1 to 1. Since we do not consider spatial determinism in our algo-
rithm, it is generally enough to have a random value generator for
jitter function J(). We also give a user specified jiiter constant b,
for each level to provide some jitter control interface. Upsample
and jitter step does not alter image index r of coordinate image.

- 19 -

S;pl == (S¢lpl + Ji(p)by), 3

Finally, we perform correction step to correct the image being
synthesized to have similar structures that of the rotated exem-
plar images. For each pixel p in coordinate image S,, we fetch
a neighborhood NS, (p), and try to find most well matching exem-
plar location u by measuring error between NS, (p) and exemplar
neighborhood N E;[u]. The overall process is very similar to that
of Lefebvre et al 2005[5], with some modifications to consider im-
age index r. Since we prepared our candidate set to consider rotated
image indexes, correction step can successfully perform transitions
between rotated images. We also use penalty constant k to keep the
coordinates under control to prevent too much coordinate jumping.

0<h <1

S.lp) = Cylmin (Selp + Anin] — Anin), where
i B =
e L INS{p) = NE L (w)|[(7)
ae{(Z3). (5" (11)}
in which ¥(j) = { },+ 5 j i i 1G]

buin = S7P+ D], 1= S7[p + 4],
n = r component of C**(S¢[p + A] — A),
u = coordinate of C!*(S¢[p+ A] — A)

We also do subpass just like as introduced in Lefebvre et al
2005[5]. In our implementation of the correction step, we perform
2 correction pass and 2* subpass for each level.

6 Results
6.1 Speed

Our implementation of the algorithm shown that it takes about 10
seconds to preprocess 64 exemplar and 70 seconds for 128> ex-
emplar. For actual synthesis process, it had no much difference
with the GPU implementation of the algorithm from Lefebvre et al
2005[5], since our algorithm considers only one additional candi-
date during correction step than [5].

6.2 Synthesis results and comparison

We show some synthesized textures using our algorithm in Fig. 6.
As you can see in the figure, our algorithm obtains results with
rotational variations, which greatly riches the look of texture fea-
tures. Also, our algorithm produces no or much less undesirable
seam artifacts than previous algorithms(See Fig.4. This kind of
texture has very clear edge seams when tiled due to great difference
along the edge areas, previous algorithms produce practically un-
usable textures with a lot of texture patch seams because the algo-
rithms cannot find proper neighborhoods to produce smooth tran-
sition between texture boundaries. However, since we extensively
use rotated image features to match neighborhoods, our algorithm

Fig. 4: Comparison of results from our algorithm and Lefebvre et
al 2005[5].

can find proper texture neighborhoods to obtain smooth transition
between texture boundaries, resulting much smoother and natural
synthesis results.

Fig. 5: A failure case of our algorithm.

7 Conclusion

We introduced a new algorithm which uses multiple rotated in-
put exemplars to synthesize a texture of good quality. Our al-
gorithm successfully generates fine texture results by redefining
coordinate image to reflect an index of rotated exemplar pyramid
and preparing candidates of rotated images for each pixel. Our al-
gorithm can give rotational varjations to the synthesis result, and
seamlessly synthesizes textures which were not very appropriate

- 20 -

to be an exemplar for previous synthesis methods due to great dif-
ference along the texture boundaries when tiled, thus opening up
some amount of textures which were not very good to be synthe-
sized previously. The framework of our algorithm is not only lim-
ited to synthesizing a texture with multiple rotated input exemplar,
but also have some possibilities to be used with two or more in-
put exemplars. We can consider this as a work to be done in the
future. Although our algorithm successfully generates nice results
with most exemplars, there are some cases that our algorithm does
not. Sometimes a texture can have a structure which shows very
clear shades of lighting, which may get very confusing when we
mix various rotated version of the texture. One such case is shown
in Fig. 5. Although the result does not produce visible seams, it
does not look very similar to the input exemplar due w messed up
lighting condition of the result. This is a limitation of our algorithm
and a problem to be solved.

8 Acknowledgements

This work was supported by the Second Brain Korea 21 Project.

References

[1] ASHIKHMIN, M., Synthesizing natural textures, Symposium
on Interactive 3D Graphics, 217-226 (2001)

[2] EFROS, A,, AND FREEMAN, W., lmage quilting for texture
synthesis and transfer, ACM SIGGRAPH, 341-346 (2001)

[3] HERTZMANN, A., JACORBS, C., OLIVER, N., CURLESS,
B., AND SALESIN, D., Image analogies, ACM SIGGRAPH,
327-340 (2001)

[4] KWATRA, V., SCHODL, A., ESSA, I, TURK, G., AND BO-
BICK, A., Graphcut textures: image and video synthesis using
graph cuts, ACM SIGGRAPH, 277-286 (2003)

[5] LEFEBVRE, S., AND HOPPE, H., Parallel controllable tex-
ture synthesis, ACM SIGGRAPH, 777-786 (2005)

[6] LEFEBVRE, S., AND HOPPE, H., Appearance-space texture
synthesis, ACM SIGGRAPH, 541-548 (2007)

17) WEL L.-Y, HAN, J., ZHOU, K., BAO, H., GUO, B., SHUM,
H.-Y., Inverse texture synthesis, ACM SIGGRAPH, 52 (2008)

[8] TONG. X., ZHANG, 1, L1U, L., WANG, X., GUO, B., AND
SHUM, H.-Y.. Synthesis of bidirectional texture functions on
arbitrary surfaces, ACM SIGGRAPH, 665-672 (2002)

[91 WEIL L.-Y., AND LEVOY, M., Order-independent texture syn-
thesis, http:/graphics.stanford.edu/papers/texture-synthesis-
sig03/. (Earlier version is Stanford University Computer
Science TR-2002-01.) (2003)

[10} ZHANG, J., ZHOU, K., VELHO, L., GUO, B., AND SHUM,
H.-Y., Synthesis of progressively-variant textures on arbitrary
surfaces. ACM SIGGRAPH, 295-302 (2003

.21 -

Fig. 6: Synthesis results of our algorithm,

- 22 .

(@S PNEY]

Han-wook Park

2003.03 ~ 2007.02 Bachelor’s degree in Dept. of Computer Science and Engineering. Korea
University, Korea

2007.03 ~ 2009.02 Master's Degree in Dept. of Computer Science and Engineering. Korea
University, Korea

His current research interests include texture synthesis and image processing.

Chang-hun Kim
1975.03 ~ 1979.03 B.S. in Dept. of Economics. Korea University, Korea
1990.04 ~ 1993.02 Ph.D. in Dept. of Computer Science, University of Tsukuba, Japan
1979.01 ~ 1987.02 Senior Researcher, Korea Institute of Science and Technology(KIST)
1993.02 ~ 1995.02 Principal Researcher, SERI, KIST
2003.02 ~ 2004.01 Visiting Professor, UCLA
1995.03 ~ Now Professor, Dept. of Computer Science & Engineering,
Korea University, Korea
2000.10 ~ Now Vice-Chairman, The Korea Computer Graphics Society(KCGS)
2005.01 ~ Now The trustee of Korea Information Science Society
2005.11 ~ Now President of Information and Communication University,
Korea University, Korea
2005.11 ~ Now President of Computer Science and Technology graduate school,
Korea University, Korea
His current research interests include fluid animation and mesh processing.

- 23 .

