R-tree는 데이터베이스 시스템에서 가장 많이 사용되는 색인 구조로 다차원의 데이터를 관리하는데 매우 효율적이다. 하지만 데이터베이스 시스템이 처리해야 하는 데이터의 용량이 증가함에 따라, 기존의 R-tree에서의 범위 질의의 처리는 디스크의 접근 지연 등의 이유로 인하여 수행 시간이 증가하게 되었다. 이러한 문제들을 해결하기 위하여 버퍼를 사용하거나 혹은 다수의 디스크와 프로세서를 사용하여 병렬로 질의를 수행하고자 하는 많은 연구들이 진행되었다. 이러한 연구들의 일환으로 최근 Graphics Processing Unit(GPU)을 이용한 병렬화 기법들에 대한 연구들이 진행되고 있다. 이러한 GPU의 적용을 통한 병렬화는 계산 속도의 증가와 디스크 접근 횟수의 감소를 통하여 수행 속도의 개선을 가능하게 하지만 GPU와 CPU사이의 메모리 교환 및 GPU 메모리의 접근 지연 등에 의한 오버헤드를 발생시킨다. 본 논문에서는 이러한 오버헤드를 해결하고 효과적으로 GPU를 적용하기 위하여 GPU를 버퍼로 사용하여 범위 질의를 병렬화하는 기법을 제안하였다. 버퍼 알고리즘을 통하여 메모리 교환 횟수를 줄이고, 동시 접근 가능한 메모리의 용량을 증가시켜 메모리의 접근 지연을 최소화 할 수 있었다. 제안 기법과 기존의 인덱스의 비교 실험에서 최대의 경우 5배 정도의 성능이 개선되는 것을 확인 할 수 있었다.
인터넷과 같은 대량의 정보에 대응할 수 있는 고성능 정보검색시스템을 구축하기 위해서는 지금까지 고가의 중대형 컴퓨터를 주로 활용하여 왔으나, 최근 가격대 성능비가 높은 PC 클러스터 시스템을 활용하는 방안이 경제적인 대안으로 떠오르고 있다. PC 클러스터 상에서의 병렬정보검색시스템을 효율적으로 운영하기 위해서는 사용자가 입력한 질의를 처리하는데 요구되는 개별 PC의 디스크 I/O 및 검색관련 연산을 모든 PC에 가능한 균등하게 분배할 필요가 있다. 본 논문에서는 같은 질의에 동시에 등장할 가능성이 높은 색인어들끼리 군집 화하고 생성된 군집을 활용하여 색인어들을 각 PC에 분산저장함으로써 보다 높은 수준의 병렬화를 달성할 수 있는 방안을 제시한다. 대용량 말뭉치를 활용한 실험결과 본 논문에서 제시하는 분산저장기법이 충분한 효율성을 가지고 있음을 확인하였다.
유비쿼터스 시대의 텔레매틱스 데이터 관리는 자동차의 위치나 속도, 엔진의 속도, 타이어의 상태, 운전자의 관심사항 등의 실시간으로 유입되는 스트림 데이터에 대한 질의를 처리하는데 있다. 본 논문에서는 기존의 스트림 DBMS의 질의처리 연구현황을 비교 분석하고, 스트림 DBMS에서 다뤄야 하는 모든 유형의 질의를 질의 전처리기를 사용하여 하나의 통합된 시스템에서 처리할 수 있는 통합 하이브리드 모델을 제안한다. 최근 각종 장치의 가격은 하락하는 반면, 성능은 수직 상승함에 따라 DB와 큐등을 위한 공간을 추가함으로써 최대의 병렬성을 보장받을 수 있다. 그 결과 제안된 하이브리드 모델에서는 다양한 유형의 스트림 DBMS 질의들을 단일 시스템 내에서 일괄적이며 효율적으로 처리하여 시스템 성능 향상을 기대 할 수 있다.
본 논문은 병렬 입출력과 효율적인 디스크 접근을 이용하여 입출력 성능을 높임으로써 지리 정보 시스템의 질의 처리 성능을 향상시키는 것을 목적으로 한다. 동시에 접근할 가능성이 높은 인접한 공간 데이터를 디스크의 논리적 블록 단위로 패킹하여 하나 또는 연속적인 논리적 블록으로 클러스터링 하면 한번의 디스크 접근으로 많은 공간 데이터를 읽을 수 있어 질의 처리에 따른 디스크 접근 횟수와 디스크 접근 오버 헤드를 줄임으로써 입출력 시간을 줄일 수 있다. 본 논문에서는 기존 Parallel R-tree 기법의 병렬 입출력 기법과 패킹 기반 클러스터링 기법을 결합하여 효율적인 입출력을 지원하는 EPR(Enhanced Parallel R-tree) 색인 기법을 제안한다. EPR 기법의 주요 특징은 다음과 같다. 첫째, 공간 데이터를 Hilbert space filling curve를 이용하여 인접도에 따라 정렬하여 패킹함으로써 상향식으로 R-tree를 생성한다. 둘째, 정렬된 공간 데이터를 패킹하여 하나 또는 연속적인 논리적 블록에 저장하는 패킹 기반 클러스터링을 통해 공간 데이터 클러스터를 구성한다. 셋째, 색인 기법 및 공간 데이터 클러스터를 round-robin 스트라이핑 방식을 통해 다중 디스크에 분산 배치한다. EPR 기법과 기존 PR 기법의 성능을 비교한 결과, 공간 질의 처리 속도가 30% 이상 향상되었으며, 특히 논리적 블록의 크기가 클수록, 공간 데이터의 크기가 작을수록 질의 처리 성능이 향상되는 결과를 보였다.
상호 연관되는 복잡한 데이터 조건이 존재하는 환경에서 스카이라인 질의는 의사결정 시스템 등 폭넓은 애플리케이션 활용 가능성으로 다양한 분야에서 연구되어 왔다. 중앙집중식 환경에서 스카이라인 질의처리 기법이 초기에 제안되었으며 최근 대량의 다차원 데이터에 대해 데이터 공간을 분할하여 맵/리듀스 플랫폼 상에서 병렬적으로 처리하는 기법이 제안되었다. 그러나 현재까지의 기법이 비균등적 실행과 높은 중복 작업으로 효율성이 저하된다는 문제점을 배경으로 본 논문에서는 랜덤 샘플링을 통해 데이터 분포를 추정하여 비균등 분할 문제를 해결하고 각 기반의 데이터 공간을 분할하여 스카이라인 처리 과정에서 중복 작업을 최소화한 새로운 기법 MR-DEAP를 제안한다. 마지막으로 다양한 환경에서의 실험결과 제안된 기법이 다른 각 기반 분할과 그리드 분할 기법보다 우수한 것을 입증하였다.
최근 빠르게 발생하는 빅데이터 스트림이 다양한 분야에서 활용되고 있다. 이러한 빅데이터 전체를 수집하고 처리하는 것은 매우 비경제적이므로, 데이터 스트림 중 필요한 데이터를 걸러내는 필터링 과정이 필요하다. 본 논문에서는 아파치 스톰(Apache Storm)을 사용하여 데이터 스트림의 질의 필터링 시스템을 구축한다. 스톰은 대용량 데이터 스트림을 처리하기 위한 실시간 분산 병렬 처리 프레임워크이다. 하지만, 스톰은 입력 데이터 구조나 알고리즘 변경 시, 코드의 수정과 재배포, 재시작 등이 필요하다. 따라서, 본 논문에서는 이 같은 문제를 해결하기 위해 아파치 카프카(Apache Kafka)를 사용하여 데이터 수집 모듈과 스톰의 처리 모듈을 분리함으로써 시스템의 가용성을 크게 높인다. 또한, 시스템을 웹 기반 클라이언트-서버 모델로 구현하여 사용자가 언제 어디에서든 질의 필터링 시스템을 사용할 수 있게 하며, 웹 클라이언트를 통해 입력한 질의를 자동적 분석하는 쿼리 파서를 구현하여 별도의 프로그램의 수정 없이 질의 필터링을 적용할 수 있다.
데이터웨어하우징의 애트리뷰트 벡터나 멀티미디어 데이터베이스의 특징 벡터는 모두 고차원 데이터를 이루고 있기 때문에, 이러한 고차원 데이터를 효율적으로 검색하기 위해서는 고차원 색인 기법이 요구된다. 이를 위하여 다수의 고차원 색인 기법들이 제안되었는데, 제안된 대부분의 색인 기법들이 차원의 수가 증가할수록 검색 성능이 급격히 저하되는 ‘차원 저주(dimensional curse)’ 문제를 지니고 있다. 셀-기반 필터링(Cell-Based Filtering : CBF) 기법은 이러한 차원 저주 문제를 해결하기 위해 제안되었다. 그러나 CBF 기법은 데이터의 양이 증가할수록 선형적으로 검색 성능이 감소하며, 이를 극복하기 위해 병렬 처리 기법을 사용하는 것이 필요하다. 본 논문에서는 데이터 디클러스터링(declustering) 방법으로 수평 분할 방식을 사용한 병렬 CBF 기법을 제안한다. 아울러 제안한 병렬 CBF 기법의 성능을 최대화하기 위하여, 병렬 CBF 기법을 다수의 서버로 구성된 Shared Nothing(SN) 구조의 클러스터 아키텍쳐 하에서 구축한다. 또한 SN 구조의 클러스터 아키텍쳐에 적합한 데이타 삽입 알고리즘, 범위질의 처리 알고리즘, k-최근접 질의 처리 알고리즘을 제시한다. 마지막으로 제안하는 병렬 CBF 기법이 기존 CBF 기법과 비교하여 서버 개수에 비례하여 우수한 검색 성능을 달성함을 보인다.
분산된 공간 데이터를 효과적으로 저장. 관리하고 공유하기 위하여 분산 공간 데이터베이스 시스템의 필요성이 대두되었다. 분산 공간 데이터베이스 시스템은 많은 변화가 있는 환경이기 때문에 최적화된 질의 플랜을 작성하기가 어렵고 또한 고비용의 공간 연산 비용을 고려해야 하는 문제를 가지고 있다. 본 논문은 질의 실행 시간이 변화된 분산 데이터베이스 환경을 고려하여 질의를 수행하며 공간 조인을 병렬적으로 수행하는 동적 콜렉터를 제안한다. 동적 콜렉터는 분산 데이터베이스 환경의 변화에 적응할 수 있으며 분산 공간 조인을 효율적으로 처리할 수 있다.
관계형 데이터베이스 시스템에서 결합 연산자는 데이터베이스 질의를 구성하는 연산자들 중 가장 많은 처리시간을 요구한다. 따라서 이러한 결합연산자를 효율적으로 처리하기 위해 많은 병렬 알고리즘들이 소개되었다. 그 중 하이브리드 해쉬 결합 알고리즘은 가장 우수한 것으로 알려져왔다. 그러나 이 알고리즘은 여러 노드로 데이터를 분할하는 과정에서 데이터의 편중 문제가 발생하며, 이는 전체 시스템의 성능을 크게 저하시키게된다. 본 논문에서는 이러한 데이터 편중문제를 해결한 변형된 하이퍼퀵 정렬을 이용한 병렬 결합 알고리즘을 non-equijoin을 위한 알고리즘으로 확장하였다. 또한 T805로 연결된 하이퍼큐브 구조 시스템에서 시뮬레이션하여 얻은 결과를 수치 계산적 비용모델의 결과와 비교를 통해 변형된 하이퍼 퀵 정렬을 이용한 병렬 결합 알고리즘의 성능을 분석하고 , 비용모델의 타당성을 입증하였다.
조인 연산은 관계형 데이타베이스에서와 같이 시간 데이타베이스에서도 시스템 성능에 큰 영향을 미친다. 특히, 시간 조인은 조인 연산 단계 이전에 간격 분할의 최적화가 질의 처리 성능을 결정한다. 이 논문에서는 시간 데이타베이스의 병렬 조인 질의 처리 성능을 개선하기 위해 시간 조인 연산을 위한 시간 간격을 분할하는 최소 분할 기법을 제안하였고, 제안된 간격 분할의 최소 분할점을 결정하는 최소 간격 분할 알고리즘의 유효성은 예제 시나리오를 통해 검증하였으며, 기존 분할 알고리즘에 비해 성능 개선 효과가 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.