• Title/Summary/Keyword: 병렬 유한요소 해석

Search Result 71, Processing Time 0.022 seconds

Efficient Parallel Visualization of Large-scale Finite Element Analysis Data in Distributed Parallel Computing Environment (분산 병렬 계산환경에 적합한 초대형 유한요소 해석 결과의 효율적 병렬 가시화)

  • Kim, Chang-Sik;Song, You-Me;Kim, Ki-Ook;Cho, Jin-Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.38-45
    • /
    • 2004
  • In this paper, a parallel visualization algorithm is proposed for efficient visualization of the massive data generated from large-scale parallel finite element analysis through investigating the characteristics of parallel rendering methods. The proposed parallel visualization algorithm is designed to be highly compatible with the characteristics of domain-wise computation in parallel finite element analysis by using the sort-last-sparse approach. In the proposed algorithm, the binary tree communication pattern is utilized to reduce the network communication time in image composition routine. Several benchmarking tests are carried out by using the developed in-house software, and the performance of the proposed algorithm is investigated.

The Cluster Characterization on the Domain Decomposition Algorithms (클러스터 구조 특성에 따른 영역분할 알고리즘)

  • Park, Tae-Hyo;Tak, Moon-Ho;Lee, Kyung-Jae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.635-638
    • /
    • 2011
  • 유한요소법은 편미분방정식(Partial Differential Equation)의 수치적 근사 해를 구하기 위한 가장 일반적이고 효율적인 방법으로 다양한 공학 분야에서 널리 사용되어지고 있다. 유한요소법의 해석은 연속적인 범위를 가지는 문제를 여러 개의 요소로 나누어 다항식의 형상함수를 만들게 되며 결과적으로 근사 해를 구하게 된다. 이때 해석의 정확성을 높이기 위하여 형상함수의 차수를 높이고 요소의 개수를 늘리게 되면, 이에 따른 수치 계산량의 급격한 증가로 인해 수치해석의 효율성은 떨어지게 된다. 이를 보완하기 위해 유한요소법에 영역분할기법을 적용하여 병렬해석을 수행하면 해의 정확성과 효율성을 동시에 높인다. 병렬해석을 수행하는데 있어서 클러스터의 구조적 특성은 해석의 효율성에 영향을 미치게 된다. 따라서 본 논문에서는 일반적인 모델에 대하여 병렬해석의 수행을 통하여 클러스터의 구조적 특성이 병렬해석의 효율성에 미치는 영향에 대해 확인한다.

  • PDF

Parallel Finite Element Analysis System Based on Domain Decomposition Method Bridges (영역분할법에 기반을 둔 병렬 유한요소해석 시스템)

  • Lee, Joon-Seong;Shioya, Ryuji;Lee, Eun-Chul;Lee, Yang-Chang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.35-44
    • /
    • 2009
  • This paper describes an application of domain decomposition method for parallel finite element analysis which is required to large scale 3D structural analysis. A parallel finite element method system which adopts a domain decomposition method is developed. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay triangulation method is introduced as a basic tool for element generation. Domain decomposition method using automatic mesh generation system holds great benefits for 3D analyses. Aa parallel numerical algorithm for the finite element analyses, domain decomposition method was combined with an iterative solver, i.e. the conjugate gradient(CG) method where a whole analysis domain is fictitiously divided into a number of subdomains without overlapping. Practical performance of the present system are demonstrated through several examples.

구조해석에서의 병렬처리

  • 송윤환
    • Computational Structural Engineering
    • /
    • v.5 no.2
    • /
    • pp.28-30
    • /
    • 1992
  • 본 고에서는 현재 많은 관심의 대상이 되고 있는 병렬처리에 대해서 현재까지 연구되어온 병렬 환경에 적합한 구조해석 알고리즘에 대하여 간략히 설명하였다. 앞으로 병렬 컴퓨터가 더욱 일반화되고 표준화되리라 예상되므로, 방대한 계산량을 요구하는 유한요소해석에 대한 보다 효율적인 병렬 알고리즘의 개발을 위하여 현재까지 진행된 연구에 대한 분석 및 더욱 많은 노력을 기대한다.

  • PDF

Supercomputing and Parallel Computing in Finite Element Analysis (유한요소해석에서의 슈퍼컴퓨터 및 병렬계산 이용)

  • 이재석
    • Computational Structural Engineering
    • /
    • v.5 no.2
    • /
    • pp.18-27
    • /
    • 1992
  • 88년 9월중에 한국과학기술연구원 시스템공학연구소가 당시의 슈퍼컴퓨터 중 최상위 성능을 가진 Cray-2S(4 CPU, 1GB)를 설치함에 따라 국내에도 슈퍼컴퓨터 시대가 열리게 되었으며, 90년 10월에 산업계에서는 최초로 기아자동차에서 Cray Y/MP(1CPU)를 설치한 이래 최근에 국방과학연구소, 삼성그룹에서도 Cray Y/MP계열의 슈퍼컴퓨터를 설치하여 과학기술 계산 및 공학해석에 폭넓게 활용할 전망이다. 따라서 본 고에서는 슈퍼컴퓨터의 정의 및 분류, 특징과 보급현황에 대하여 알아보고 슈퍼컴퓨터 및 병렬처리기술을 이용한 유한요소해석에 관하여 간략히 기술하고저 한다.

  • PDF

Nonlinear Shell Finite Element and Parallel Computing Algorithm for Aircraft Wing-box Structural Analysis (항공기 Wing-box 구조해석을 위한 비선형 쉘 유한요소 및 병렬계산 기법 개발)

  • Kim, Hyejin;Kim, Seonghwan;Hong, Jiwoo;Cho, Haeseong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.8
    • /
    • pp.565-571
    • /
    • 2020
  • In this paper, precision and efficient nonlinear structural analysis for the aircraft wing-box model is developed. Herein, nonlinear shell element based on the co-rotational (CR) formulation is implemented. Then, parallel computing algorithm, the element-based partitioning technique is developed to accelerate the computational efficiency of the nonlinear structural analysis. Finally, computational performance, i.e., accuracy and efficiency, of the proposed analysis is evaluated by comparing with that of the existing commercial software.

Parallelization of Multifrontal Solution Method for Shared Memory Architecture (다중프론트 해법의 공유메모리 병렬화)

  • Kim, Min Ki;Kim, Jeong Ho;Park, Chan Yik;Kim, Seung Jo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.972-978
    • /
    • 2012
  • This paper discusses the parallelization of multifrontal solution method, widely used for finite element structural analyses, for a shared memory architecture. Multifrontal method is easier than other linear solution methods because the solution procedure implies that unknowns can be eliminated simultaneously. Two innovative ideas are introduced to achieve optimal solver performance on a shared memory computer. Those are pairing two frontal matrices and splitting the frontal matrix in order to reduce the temporal memory space required by independent computing tasks. Performance comparisons between original algorithm and proposed one prove that proposed method is more computationally efficient on current multicore machines.

Parallel Computation on the Three-dimensional Electromagnetic Field by the Graph Partitioning and Multi-frontal Method (그래프 분할 및 다중 프론탈 기법에 의거한 3차원 전자기장의 병렬 해석)

  • Kang, Seung-Hoon;Song, Dong-Hyeon;Choi, JaeWon;Shin, SangJoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.889-898
    • /
    • 2022
  • In this paper, parallel computing method on the three-dimensional electromagnetic field is proposed. The present electromagnetic scattering analysis is conducted based on the time-harmonic vector wave equation and the finite element method. The edge-based element and 2nd -order absorbing boundary condition are used. Parallelization of the elemental numerical integration and the matrix assemblage is accomplished by allocating the partitioned finite element subdomain for each processor. The graph partitioning library, METIS, is employed for the subdomain generation. The large sparse matrix computation is conducted by MUMPS, which is the parallel computing library based on the multi-frontal method. The accuracy of the present program is validated by the comparison against the Mie-series analytical solution and the results by ANSYS HFSS. In addition, the scalability is verified by measuring the speed-up in terms of the number of processors used. The present electromagnetic scattering analysis is performed for a perfect electric conductor sphere, isotropic/anisotropic dielectric sphere, and the missile configuration. The algorithm of the present program will be applied to the finite element and tearing method, aiming for the further extended parallel computing performance.

Finite element analysis on supercomputers (슈퍼컴퓨터를 이용한 유한요소해석)

  • 이재석
    • Computational Structural Engineering
    • /
    • v.1 no.2
    • /
    • pp.26-33
    • /
    • 1988
  • 유한요소해석프로그램들의 적용대상이 최근들어 다(多) 자유도의 비선형문제로 확대됨에 따라 컴퓨터의 계산속도가 특히 중요한 제한조건으로 대두되기 시작하였으며 금속성형해석, 자동차 등의 충돌해석(자유도가 2만-6만), 토질 및 콘크리트 등의 점소성해석과 더불어 항공기, 터빈 등의 열응력해석 및 동적해석 등에 있어서는 막대한 계산시간으로 인하여 해석의 효율성에 대한 문제가 제기되고 있다. 따라서 슈퍼컴퓨터를 포함하여 고속연산기능을 가진 병렬처리컴퓨터를 이용하여 유한요소해석을 수행하여야 할 필요성이 증가하고 있다. 88년 9월중에 한국과학기술원 시스템공학센터에 현존하는 슈퍼컴퓨터중 최상위 성능을 가진 CRAY2S가 설치됨에 따라 국내에도 슈퍼컴퓨터시대가 열리게 되었으며 따라서 본 고에서는 CRAY2S의 시스템개요 및 응용소프트웨어에 대하여 소개하고 슈퍼컴퓨터를 이용한 유한요소해석에 관하여 간략히 기술하고저 한다.

  • PDF

The Finite Element Analysis for Nearly Incompressible and Impermeable Porous Media Using MPI Library (MPI 라이브러리를 이용한 비압축, 비투과성 포화 다공질 매체의 유한요소해석)

  • Tak, Moon-Ho;Park, Tae-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.56-59
    • /
    • 2010
  • 포화된 다공질 매체의 수치해석은 일반적으로 혼합유한요소방법(Mixed Finite Element Method)이 쓰인다. 이 혼합유한요소 방법은 고체변형과 유체의 이동을 동시에 고려하게 되는데 고체의 변형이 거의 없이 유체만 이동할 경우나 고체와 유체의 변형이 없이 간극수압만 존재할 경우에는 요소잠김현상(Element Locking)이 발생하여 혼합유한요소방법으로 해석하기에는 수치적으로 불안정해 진다. 본 논문에서는 이러한 수치적 불안정성을 해결한 스태거드 방법(Park and Tak 2010)을 소개하고 수치적 효율성을 위해 MPI(Message-Passing Interface) 라이브러리를 이용한 병렬해석 기법이 적용된다.

  • PDF