• 제목/요약/키워드: 병렬 기구

검색결과 171건 처리시간 0.037초

병렬기구형 공작기졔의 기구학적 보정에 관한 연구 (Study on Kinematic Calibration of a Parallel-typed Machining Center Tool)

  • 이민기;김태성;박근우
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2237-2244
    • /
    • 2002
  • This research develops a low-cost and high accuracy kinematic calibration method based on the following principles: 1) the platform locations are accurately measured by a constrained movement to inspect a calibration target; 2) the constrained movement is chosen to guarantee the parameter observability; 3) the mechanical fixture to constrain the movement and the sensor to check the constrained movement are implemented by low-cost and high-accuracy devices; 4) the calibration is easily done at an industrial environment. The kinematic parameters calibrated with respect to a single plane aren't influenced due to the misalignment of the plane. A parameter observability is successfully obtained even through one planar constraint, which guarantees that all kinematic parameters are estimated by minimizing the cost function.

평면형 병렬 기구의 기구학적 최적설계: 2RRR-RP기구에 적용 (Optimal Kinematic Design of Planar Parallel Mechanisms: Application to 2RRR-RP Mechanism)

  • 남윤주;이육형;박명관
    • 제어로봇시스템학회논문지
    • /
    • 제12권5호
    • /
    • pp.464-472
    • /
    • 2006
  • This paper presents the two degree-of-freedom (DOF) planar parallel mechanism, called the $2{\underline{R}}RR-RP$ manipulator, whose degree-of-freedom is dependent on an additional passive constraining leg connecting the base and the platform. First, the kinematic analysis of the mechanism is performed: the inverse and forward kinematic problems are analytically solved, the workspace is systematically derived, and all of the singular configurations are examined. Then, in order to determine the geometric parameters the optimization of the mechanism is performed considering its dexterity, stiffness, and space utilization. Finally, the kinematic performances of the optimized mechanism are evaluated through the comparison study to the conventional 5-bar parallel manipulator.

역나선 이론을 이용한 저자유도 병렬형 기구의 강성해석 (Stiffness Analysis of a Low-DOE Parallel Manipulator using the Theory of Reciprocal Screws)

  • 김한성
    • 대한기계학회논문집A
    • /
    • 제29권5호
    • /
    • pp.680-688
    • /
    • 2005
  • This paper presents a methodology for the stiffness analysis of a low-DOF parallel manipulator. A low-DOF parallel manipulator is a spatial parallel manipulator which has less than six degrees of freedom. The reciprocal screws of actuations and constraints in each leg can be determined by making use of the theory of reciprocal screws, which provide information about reaction forces due to actuations and constraints. When pure farce is applied to a leg, the leg stiffness is modeled as a linear spring along the line. For pure couple, it is modeled as a rotational spring about the axis. It is shown that the stiffness model of an it_DOF parallel nipulator consists of F springs related to actuations and 6-F springs related to constraints connected from the moving platform to the base in parallel. The 6x f Cartesian stiffness matrix is derived, which is the sum of the Cartesian stiffness matrices of actuations and constraints. Finally, the 3-UPU, 3-PRRR, and Tricept parallel manipulators are used as examples to demonstrate the methodology.

2개의 자유도를 가진 병렬 매니퓰레이터의 기구학 해석 (Kinematics Analysis of a 2-DOF Parallel Manipulator)

  • 이종규;이상룡;이춘영;양승한
    • 한국정밀공학회지
    • /
    • 제29권1호
    • /
    • pp.64-71
    • /
    • 2012
  • In this paper, a parallel manipulator is comprised of two sliders and four links. Sliders execute a linear reciprocating motion depending on parallel guides and make the connected links rotate. A couple of links connected by sliders do coupling motion. The end-effector called a link tip has orientation angle. Through the kinematics analysis of this manipulator, we found displacement, velocity and acceleration using direct and inverse kinematics. We used equations that derived from this analysis and determined five constraint conditions. These conditions had much to do with rotation states of links, the relative relation of link length and coupling motion state. To verify those, we suggest a new algorithm regarding constraint conditions of a manipulator. With the result which performed the algorithm, we found out that operation range of coupled links was limited by relative relation of link length and that manipulator was not able to carry out a series of link motion, in case of being the link vertical between two parallel guides.