• Title/Summary/Keyword: 병렬형매니퓰레이터

Search Result 20, Processing Time 0.042 seconds

혼합형 5자유도 마이크로 매니퓰레이터의 개발

  • 정구봉;이병주;오세민
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.05a
    • /
    • pp.180-183
    • /
    • 2005
  • 본 논문에서는 새로운 형태의 혼합형 5자유도 마이크로 매니퓰레이터를 제안하고 개발하고자 한다. 제안된 기구는 평면형 2자유도 XY-stage와 공간형 3자유도 병렬 기구로 구성된다. 3자유도 병렬기구는 3개의 직렬체인으로 이루어져 있으며, 공간상에서 두 방향의 회전 움직임과 Z축 방향으로의 병진운동을 생성한다. 모의실험을 통하여 개발된 기구의 작업공간과 출력단에서의 정밀도 해석을 수행한다. 개발된 기구는 조작 대상 물체의 미세 위치제어를 필요로 하는 반도체 및 기계, 생물, 의료분야 등에 적용 될 수 있다.

  • PDF

Study of Local Performance Index of 2-DOF Parallel Manipulator (2 자유도 병렬형 매니퓰레이터의 지역 성능지수에 관한 연구)

  • Lee, Jong Gyu;Yang, Seung Han;Lee, Sang Ryong;Lee, Choon Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.89-95
    • /
    • 2013
  • This study investigates a parallel manipulator that can move over two parallel sliders and in which the end-effector of the manipulator can be adjusted arbitrarily. Through the direct and inverse kinematics of the manipulator, position equations are derived. These equations represent the relationship between the positions of the sliders and the position of the end-effector. The Jacobian matrices of the direct and inverse kinematics are obtained by these equations. By using the condition number defined from these matrices, the local performance index of the manipulator is proposed. By using the simulation results of the performance index, we find that the manipulator can smoothen movements in only one quadrant and that the distribution of the maximal performance index is affected by the ratio of the length of links and the orientation of the end-effector.

A Study on Performance analysis of a modified parallel manipulator (수정된 병렬형매니퓰레이터의 성능해석에 관한 연구)

  • 김주영;배재만;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.557-560
    • /
    • 2000
  • The Purpose of this study is analysis of kinematic for a modified manipulator and experimental test to certify auto-balancing operation. The test is carried out as follows. First, we solve the inverse kinematics and then do a closed loop control. Second we confirm translation displacement and rotation angle of a manipulator.

  • PDF

Design of the Parallel Manipulator for Minimizing the Extreme Articular Force in the Specific Translation Trajectory (특정 병진작업경로에서 최소의 관절힘을 받는 병렬형 매니퓰레이터의 설계)

  • 양현익;이종우;허원혁
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.68-75
    • /
    • 2004
  • Recently, need of the parallel manipulator requiring superior precision is increasing for medical application and precision manufacturing. In this study, we convert a given complex translation trajectory of the moving platform into a set of segments and hence a complex motion of the moving platform can be tractable and easily controled in a very limited workspace. In addition force exerted. to each link is minimized so that the minimized force can be transmitted to the end effector of the moving platform. An user friendly program is developed to design Gough-type 6DOF parallel manupulator based on the proposed method.

The 6-DOF Parallel Manipulator Having the Specific Trajectory Based on the Kinematic Isotropy (기구학적 등방성을 고려한 특정작업경로를 가진 6-DOF 병렬형 매니퓰레이터)

  • Yang, Hyun-Ik;Xu, Yuan-Ge
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.495-502
    • /
    • 2004
  • In this paper, kinematic structure of parallel manipulator having 6-DOF is determined to follow the specific trajectory represented by several curves expressed by the parametric variable functions. In addition, the parallel manipulator is designed to have a high dexterity by considering a kinematic isotropy which can stabilize the motion of the moving platform in the restricted workspace.

Force/Moment Transmissionability Analysis of a Parallel Manipulator (병렬형 매니퓰레이터의 힘/모우멘트 전달특성에 관한 연구)

  • Ahn, Byoung-Joon;Hong, Keum-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.109-121
    • /
    • 1996
  • This paper presents how the input forces along the prismatic joints of a parallel manipulator are transmitted to the upper platform. In order to consider force transmission and moment transmission seperately the Jacobian matrix for parallel manipulators is splitted into two parts. Magnitudes of input forces on the six actuators at a given manipulator configuration which generate maximum/minimum output force with no moment generated on the platform are obtained through the singular value decomposition of a matrix involving the Jacobian. Similarly the directions of the input forces to obtain only the rotation of the platform have been analyzed. Using the singular values a simple equation for the volume of ellipsoid which is a good tool for manipulability measure is provided. Obtained results could be useful in determinimg design parameters like radius of plaform, angles between joints, etc. Simulations are porvided.

  • PDF

Kinematics and Robust PID Trajectory Tracking Control of Parallel Motion Simulator (병렬형 모션 시뮬레이터의 기구학적 해석과 강인 궤적추종 PID 제어기의 설계)

  • Hong, Seong-Il
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.161-172
    • /
    • 2007
  • This article suggests an inverse kinematics analysis of a two degree of freedom spatial parallel motion simulator and design methodology of the robust PID controller. The parallel motion simulator consists of a fixed base and a moving frame connected by two serial chains, with each serial chain containing one revolute joint and two passive spherical joint. First, an inverse kinematics problems are solved in order to find the joint variable necessary to bring the end effector to track the desired trajectory. Second, an inverse optimal PID controller is proposed to track trajectories in the face of uncertainty. And the $H_{\infty}$ optimality and robust stability of the closed-loop system is acquired through the PID controller. Finally numerical results show the effectiveness of the PID controller that is designed by square/linear tuning laws.

Singularity analysis of 6-DOF parallel manipulator with local structurization method (국부구조화 방법을 이용한 6자유도 병렬형 매니퓰레이터의 특이점 해석)

  • Kim, Doik;Chung, Wankyun;Youm, Youngil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1297-1301
    • /
    • 1997
  • Generally, singularity analysis of 6-DOF parallerl manipulators is very difficult and, as result, velocity relation has many uncertainties. In this paper, an alternative method using the local structurizatioin method(LSM) for the analysis of singular configuraions is presented. With LSM, the velocity relation can be represented in a simple form, and the result is totally equivalent to the conventional velocity relation. The velocity relation suggested in this paper gives a closed-form solution of singularities.

  • PDF

Geometrical approach for the workspace of a 6-DOF parallel manipulator (6자유도 병렬형 매니퓰레이터의 작업공간결정을 위한 기하학적 접근)

  • 김도익;정완균;염영일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.217-220
    • /
    • 1996
  • In this paper, a fully geometrical method for the determination of the workspace of a 6-DOF parallel manipulator is presented using the concept of 4-bar linkage. The reachable and dexterous can be determined from the proposed algorithm. In order to evaluate the workspace, each leg is considered as an open chain, and two kinematic constraints are developed. The proposed method is verified by simulation.

  • PDF