• 제목/요약/키워드: 병렬분해법

검색결과 16건 처리시간 0.021초

안테나 특성 고속 계산을 위한 병렬화 행렬 연산 (Parallelized Matrix Operation for Fast Computations of Antenna Characteristics)

  • 조용희
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2015년도 춘계 종합학술대회 논문집
    • /
    • pp.61-62
    • /
    • 2015
  • 밀리미터파 대역에서 사용하는 대형 안테나 해석 속도를 개선하기 위한 병렬형 행렬 연산법을 제안한다. 기존의 가우스 소거법을 병렬화하기 위해 행렬 분해와 반복법을 이용한다. 또한, 반복법의 수렴성을 높이기 위해 이전 행렬해를 부분적으로 사용하여 분해 행렬을 구성하는 방식도 제시한다. 본 제안법은 OpenMP, MPI, CUDA 등의 병렬법과 함께 사용할 수 있다.

  • PDF

GPGPU의 멀티 쓰레드를 활용한 고성능 병렬 LU 분해 프로그램의 구현 (Implementation of high performance parallel LU factorization program for multi-threads on GPGPUs)

  • 신봉희;김영태
    • 인터넷정보학회논문지
    • /
    • 제12권3호
    • /
    • pp.131-137
    • /
    • 2011
  • GPGPU는 원래 그래픽 계산을 위한 프로세서인 GPU를 일반 계산에 활용하여 저전력으로 고성능의 효율을 보이는 신개념의 계산 장치이다. 본 논문에서는 GPGPU에서 계산을 하기 위한 병렬 LU 분해법의 알고리즘을 제안하였다. Nvidia GPGPU에서 프로그램을 실행하기 위한 CUDA 계산 환경에서는 계산하고자 하는 데이터 도메인을 블록으로 나누고 각 블록을 쓰레드들이 동시에 계산을 하는데, 이 때 블록들의 계산 순서는 무작위로 진행이 되기 때문에 블록간의 데이터 의존성을 가지는 LU 분해 프로그램에서는 결과가 정확하지 않게 된다. 본 논문에서는 병렬 LU 분해법에서 블록간의 계산 순서를 인위적으로 정하는 구현 방식을 제안하며 아울러 LU 분해법의 부분 피벗팅을 계산하기 위한 병렬 reduction 알고리즘도 제안한다. 또한 구현된 병렬프로그램의 성능 분석을 통하여 GPGPU의 멀티 쓰레드 기반으로 고성능으로 계산할 수 있는 병렬프로그램의 효율성을 보인다.

다분야통합최적설계를 위한 적응분해기법 (An Adaptive Decomposition Technique for Multidisciplinary Design Optimization)

  • 박형욱;최동훈;안병호
    • 한국항공우주학회지
    • /
    • 제31권5호
    • /
    • pp.18-24
    • /
    • 2003
  • 많은 공학 시스템은 여러 개의 해석모듈들이 다양한 데이터의 입출력 관걔로 연관된 형태로 모델링 된다. 이와 같은 복잡한 하나의 시스템을 몇 개의 시스템으로 나누어 해석 및 다분야통합최적설계를 수행하면 계산소요시간 및 병렬처리 측면에서 효율적인 것으로 알려져 있다. 따라서 전체 시스템을 몇 개의 하부시스템으로 분해하는 방법에 대한 연구가 진행되어 왔으나 하부시스템 간의 계산소요시간 분배에 대한 고려가 없이 설계자가 임의로 하부시스템의 크기를 자동으로 결정하도록 하였다. 이를 위하여 적응분해기법은 유전알고리듬을 사용하였고, 기존의 병렬분해기법에서 사용된 염색체에 시스템분해 위치를 나타내는 정보를 추가한 확장염색체를 제안하여 병렬처리에 적합한 시스템분해기법을 구현하였다. 그리고, 항공기 설계 문제와 헬기 설계 문제에 적응분해기법을 적용하여 개발된 알고리듬의 효율성을 보였다.

SIMD상에서의 이차선별법을 사용한 병렬 소인수분해 알고리즘 (Parallel Factorization using Quadratic Sieve Algorithm on SIMD machines)

  • 김양희
    • 정보처리학회논문지A
    • /
    • 제8A권1호
    • /
    • pp.36-41
    • /
    • 2001
  • 본 논문에서는 첫째로 큰 정수의 소인수 분해를 위한 병렬 이차선별법(parallel quadratic sieve) 알고리즘을 제시한다. 이 알고리즘을 반복적으로 사용하여, 분산 메모리 모델(DMM)을 갖는 SIMD구조의 병렬 컴퓨터 상에서 분할정복기법을 사용하는 병력 소인수 분해(parallel factoring) 알고리즘을 제시한다. 또한 이러한 알고리즘이 시간과 프로세서의 곱의 관점에서 최적화 알고리즘임을 보인다.

  • PDF

PoLAPACK : 알고리즘적인 블록 기법을 이용한 병렬 인수분해 루틴 패키지 (PoLAPACK : Parallel Factorization Routines with Algorithmic Blocking)

  • 최재영
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제28권5호
    • /
    • pp.228-235
    • /
    • 2001
  • 본 논문에서는 분산메모리를 가진 병렬 컴퓨터에서 밀집 행렬 연산을 위한 PoLAPACK 패키지를 소개한다. PoLAPACK은 새로운 연산 기법을 적용한 LU, QR, Cholesky 인수분해 알고리즘들을 포함하고 있다. 블록순환분산법으로 분산되어 있는 행렬에 알고리즘적인 블록 기법(algorithimic blocking)을 적용하여, 실제 행렬의 분산에 사용된 블록의 크기와 다른, 최대의 성능을 보일 수 있는 최적의 블록 크기로 연산을 수행할 수 있다. 이러한 연산 방식은 분산되어 있는 원래의 행렬 A의 순서를 따르지 않으며, 따라서 최적의 블록 크기로 연산을 수행한 후에 얻어진 해 x를 원래 행렬 분산법을 따라서 재배치하여야 한다. 본 연구는 Cray T3E 컴퓨터에서 구현하였으며 ScaLAPACK의 인수분해 루틴들과 그 성능을 비교.분석하였다.

  • PDF

효율적 분산협동설계를 위한 분해 기반 병렬화 기법의 개발 (Decomposition Based Parallel Processing Technique for Efficient Collaborative Optimization)

  • 박형욱;김성찬;김민수;최동훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.818-823
    • /
    • 2000
  • In practical design studies, most of designers solve multidisciplinary problems with complex design structure. These multidisciplinary problems have hundreds of analysis and thousands of variables. The sequence of process to solve these problems affects the speed of total design cycle. Thus it is very important for designer to reorder original design processes to minimize total cost and time. This is accomplished by decomposing large multidisciplinary problem into several multidisciplinary analysis subsystem (MDASS) and processing it in parallel. This paper proposes new strategy for parallel decomposition of multidisciplinary problem to raise design efficiency by using genetic algorithm and shows the relationship between decomposition and multidisciplinary design optimization (MDO) methodology.

  • PDF

효율적 분산협동최적설계를 위한 병렬처리 기반 분해 기법 (Parallel Processing Based Decompositon Technique for Efficient Collaborative Optimization)

  • 박형욱;김성찬;김민수;최동훈
    • 대한기계학회논문집A
    • /
    • 제25권5호
    • /
    • pp.883-890
    • /
    • 2001
  • In practical design studies, most of designers solve multidisciplinary problems with large size and complex design system. These multidisciplinary problems have hundreds of analysis and thousands of variables. The sequence of process to solve these problems affects the speed of total design cycle. Thus it is very important for designer to reorder the original design processes to minimize total computational cost. This is accomplished by decomposing large multidisciplinary problem into several multidisciplinary analysis subsystem (MDASS) and processing it in parallel. This paper proposes new strategy for parallel decomposition of multidisciplinary problem to raise design efficiency by using genetic algorithm and shows the relationship between decomposition and multidisciplinary design optimization (MDO) methodology.

페리다이나믹스 이론과 병렬연산을 이용한 균열진전 문제의 형상 설계민감도 해석 (Shape Design Sensitivity Analysis of Dynamic Crack Propagation Problems using Peridynamics and Parallel Computation)

  • 김재현;조선호
    • 한국전산구조공학회논문집
    • /
    • 제27권4호
    • /
    • pp.297-303
    • /
    • 2014
  • 페리다이나믹스 이론과 이진분해 기법의 병렬연산을 이용하여 동적 균열진전 문제에 대한 애조인 형상 설계민감도 해석법을 개발하였다. 페리다이나믹스에서는 균열의 연속적인 분기를 다룰 수 있으며, Explicit 시간적분법을 채택한다. 설계민감도 해석은 애조인 변수법은 경로의존성 문제에는 적합하지 않으나 여기서는 응답해석의 경로를 이미 알고 있으므로 채택하여 사용할 수 있었다. 얻어진 해석적 설계민감도는 유한차분과 비교하여 그 정확성을 검증하였다. 유한차분법은 설계섭동량에 민감하여 비선형성이 강한 페리다이나믹스 문제에서 부정확한 설계민감도를 제시할 수 있다. 정확한 설계민감도 해석을 위해서는 이산화과정에서 $C^1$ 연속성을 가지는 체적율이 필요함을 알 수 있었다.

하우스홀더 변환법을 이용한 토플리즈 행렬의 빠른 QR 인수분해 알고리즘 (Fast QR Factorization Algorithms of Toeplitz Matrices based on Stabilized / Hyperbolic Householder Transformations)

  • 최재영
    • 한국정보처리학회논문지
    • /
    • 제5권4호
    • /
    • pp.959-966
    • /
    • 1998
  • 본 논문에서 $m{\times}n\;(m{\geq}n)$ 인 토플리즈 행렬의 빠른 QR 인수분해 알고리즘들을 제안한다. 본 알고리즘들은 위치가 변환되어도 불변하는 (shift-invariance) 토플리즈 행렬의 특성을 효과적으로 이용하였다. 알고리즘들의 주요 변환 도구로 안정된 하우스홀더 변환과 하이퍼볼릭 하우스홀더 변환을 사용하였다. 본 알고리즘들은 O(mn)의 연산을 필요로하며, 분산메모리 병렬 컴퓨터에서 쉽게 구현될 수 있다.

  • PDF

내부점 선형계획법에서의 멀티프런탈방법에 관한 연구 (A study on the multifrontal method in interior point method)

  • 김병규;박순달
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1995년도 추계학술대회발표논문집; 서울대학교, 서울; 30 Sep. 1995
    • /
    • pp.370-380
    • /
    • 1995
  • 선형계획법의 해법으로 최근에는 내부점기법(Interior Point Method)가 관심 을 끌고 있다. 이 내부점 기법은 계산복잡도 뿐만 아니라 수행속도면에서도 우수한 결과를 보이고 있다. 이 방법은 매 회 대칭양정치(Symmetric Positive Definite)인 선형시스템을 풀어야 하는데 이 과정이 전체 내부점 수 행시간의 80-90%를 차지한다. 따라서 내부점 기법의 수행속도는 대칭양정치 인 선형시스템을 효율적으로 푸는 방법에 달려 있다. 대칭양정치인 선형시스 템을 풀기 위해서는 상하분해를 이용하게 되는 데 가우스소거를 이용해서 상하 분해를 하는 경우 매 단계에서 행렬의 모든 요소를 가지고 있을 필요 가 없다. 행렬의 모든 요소에 대한 정보를 동시에 필요로 하지 않는다. 즉, 현 단계에서 가우스소거와 관련된 열들에 대한 정보만 있으면 상하 분해가 가능하고 이러한 개념을 이용한 방법이 프런탈방법이다. 프런탈 방법은 대형 선형계획 문제를 풀기에 유리하다는 장점이 있다. 이러한 프런탈 방법을 확 장해서 동시에 여러 개의 프런탈을 계산하는 방법이 멀티프런탈방법이다. 이 방법은 알고리듬 자체가 병렬처리에 적합하기 때문에 병렬처리와 관련해서 도 많은 연구가 수행되고 있다. 본 연구에서는 삭제나무(Elimination Tree)를 이용한 프런탈 방법과 프런탈방법에 슈퍼노드의 개념을 도입한 슈퍼노들 프 런탈방법등에 대해서 이제까지의 연구 현황을 알아보고 프런탈방법에 적합 하고 효율적인 자료 구조와 멀티프런탈 방법에 적용 가능한 병렬알고리듬에 대하여 연구하고자 한다. 본 연구결과 기대효과로는 프런탈 방법에 적합하고 효율적인 자료 구조와 멀티프런탈 방법에 적용 가능한 병렬알고리듬을 개발 함으로써 내부점 선형계획법의 수행속도의 개선에 도움이 될 것이다.성요소들을 제시하였다.용자 만족도가 보다 높은 것으 로 나타났다. 할 수 있는 효율적인 distributed system를 개발하는 것을 제시하였다. 본 논문은 데이타베이스론의 입장에서 아직 정립되어 있지 않은 분산 환경하에서의 관계형 데이타베이스의 데이타관리의 분류체계를 나름대로 정립하였다는데 그 의의가 있다. 또한 이것의 응용은 현재 분산데이타베이스 구축에 있어 나타나는 기술적인 문제점들을 어느정도 보완할 수 있다는 점에서 그 중요성이 있다.ence of a small(IxEpc),hot(Tex> SOK) core which contains two tempegatlue peaks at -15" east and north of MDS. The column density of HCaN is (1-3):n1014cm-2. Column density at distant position from MD5 is larger than that in the (:entral region. We have deduced that this hot-core has a mass of 10sR1 which i:s about an order of magnitude larger those obtained by previous studies.previous studies.업순서들의 상관관계를 고려하여 보다 개선된 해를 구하기 위한 연구가 요구된다. 또한, 준비작업비용을 발생시키는 작업장의 작업순서결정에 대해서도 연구를 행하여, 보완작업비용과 준비비용을 고려한 GMMAL 작업순서문제를 해결하기 위한 연구가 수행되어야 할 것이다.로 이루어 져야 할 것이다.태를 보다 효율적으로 증진시킬 수 있는 대안이 마련되어져야 한다고 사료된다.$\ulcorner$순응$\lrcorner$<

  • PDF