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Fast QR Factorization Algorithms of Toeplitz Matrices
based on Stabilized/Hyperbolic Householder Transformations

Jaeyoung Choi’

ABSTRACT

We present fast QR factorization algorithms for an mxn (m=n) Toeplitz matrix. These QR factorization
algorithms are determined [rom the shift-invariance properties of underlying matrices. The major transformation tool
is a stabilized/hyperbolic Householder transformation. The algorithms require O(mn) operations, and can be easily

implemented on distributed-memory multiprocessors.

1. Introduction including linear prediction and discretization of
integral equations. The solution to such
systems is often determined via least square

An mXn (m=n) matrix T is Toeplitz if all .
criteria.  For the full rank system the most

elements on each diagonal are equal,

numerically desirable metheds are based on

£, boey 4 the QR factorization of the matrix of the
T = Lol Ln b underlying problem (9)].
: : N Several authors  have developed QR
tm+n~1 Emsn—2 °*° bm . . .
factorization algorithms for an m X n (m = n)
Overdetermined Toeplitz systems arise in Toeplitz matrix in only O(mn) operations (1.

engineering and scientific applications. 7. 12). Bojanczyk. Brent and De Hoog (BBIH

algorithm for short) developed a Toeplitz QR

ol

e
5

2 adieti gusbsinisl AR sy
ks R

119973 11¥ 5%, AARER 119984 29 18¥

e

-



960 St=EEMIED =FX H5H M4z@64)

factorization algorithm based on the shift
invariance property of Toeplitz matrices [(1].
Cybenko developed another QR factorization of
Toeplitz matrices (7] from the lattice
algorithm (6]. This algorithm computes an
inverse orthogonal factorization TR’ = @
instead of computing T = @+ R. Cybenko and
Berry (8) described how to compute a
triangular decomposition of  Hermittian
matrices with small displacement structure
using hyperbolic Householder transformation
(111, For a Toeplitz matrix T. the
displacement rank of A = T”- T is bounded by
four and the method presented in (8] can be
used to compute the Cholesky factor of A.

In this paper, we present new QR
factorization algorithms of Toeplitz matrices.
Our derivation uses the same partitioning
presented in (1), but the new algorithm is
based on hyperbolic Householder transformations
(11).  And the proposed algorithms can be
casily implemented on distributed-memory

multiprocessors.

2. Hyperbolic Householder Transformations

Let @ be a diagonal matrix with diagonal
entries +1 and -1, A transformation W is
called hyperbolic with respect to @ if and only
if

W-o-W'=o0. (1)

A hyperbolic Householder matrix H is a
matrix of the form,

H-@-2v-v'/&v"o-v
where v is any vector for which v'- @-v 4 0.
Such a matrix is Hermitian and hyperbolic
with respect to @.

Let u be a vector such that

L al o= u' - @ u+0.

Then the choice v= u * | #f o e{Isi<

n) guarantees H+* u =F || ul o e, ie. H

can compress the hyperbolic norm of the vector
u into the /~th component of u.

The problem of rank-p updating and rank-g
downdating is defined as follows: Given a p X
n matrix Y. ¢ X n matrix Z, and an upper
triangular matrix R such that AT-4 = R"-R
+ Y'-y - Z"- Z is positive definite, find the
Cholesky factor of A. which can be computed
by transforming the matrix (R” ¥T ZD7 into
the upper triangular matrix by multiplying it
by a sequence of hyperbolic Householder
transformations with .respect to @. All
subsequent algorithms presented in the paper
are derived from this property. For properties
of the hyperbolic Householder transforms, (11).

3. QR Factorization Algorithms for
Toeplitz Matrices

This section presents the new algorithms
stabilized Householder
transformation (4} and hyperbolic Householder

based on the

transformations as well as Bojanczyk, Brent,
and de Hoog's algorithm (BBH algorithm for
short) (1]. The initial partitionings of 7' and
R are the same for both algorithms, but the
procedures to compute R and @ depend on
transformations. We call the algorithm with
one Givens rotations and one rank-2 stabilized
Householder transformation SHT algorithm,
and one rank-3 hyperbolic Householder
reflection HHT algorithm.

3.1 BBH Algorithm

Let T be a full rtank m X n (m = n)
Toeplitz matrix. 7 can be partitioned in two
ways using the shift invariance property of
Toeplitz matrices:

T=< Ty, TLZ:n):( Ty yT) (2)
Tz:m,l T*l TZ:m,l T-l

Tz( T, lemvl,n)z( T-, Tl.m—l,n) (3)

T
Tm,l:n~1 Tm.n x Tm,n



wheire we use the MATLAB notation: 7.
(L2 tis ... t1_n)T. Tomi = (t2g, ts1. ... tm )"

T is an (m-1)Xx(n-1) principal submatrix of T
T

and x. y are (n-]) vectors such that x =
Toint, ¥' = Trva, respectively. Let R be an
upper triangular matrix from the QR

factorization of T R is also partitioned in

two ways:
R =R Rz - [Ri 2z
0 Rb 0 Rb (4D
R = RT{ Rlin’ 1,7 (5)
0 R,,

where R, and Ry are (n-1)X(n-1) principal top
and bottom submatrices of R, respectively. and
z is an (n-1) vector such that z” = Ry,

From the following relation of T and R
T"- T=R" R
we can get the main relationship of R; and R
by replacing T and R with Eq.(2) and Eq.(4).
and by substituting T-r by Eq.(3) and Eq.(5).

R"R—=R"R +yy -xx"-2z-2" (6

where

» B
2 = (T v+ Towr T}/ C Tt Towy ! Towt)”
P (7)

T,/ T " T

T."

Eq.(6) says that matrix R is obtained from

the matrix R: following three rank-1
modifications. When implemented as a rank-1
update followed by two rank-1 downdates.

Eq.(6) gives us a means of computing the k-th
row of Ry from the k-th row of K;. Since the
first row of R; is defined by Ea.(7) and the
k-th row of R is identical to the (k+1)-st row
of R:;. we have a recursion for calculating the

rows of R.

T
formed to compute the orthogonal factor

is

Q.

An (m+1)X{(n-1) augmented matrix

SO BE0IX HAUC wE QR QRS ¥aeiE 9l
For details of the algorithm. see [1]. This
algorithm needs mn + 6n°2 + O(n)

multiplications to compute R and I3mn + 6n"2
+ O(n) multiplications to compute both K and .

3.2 SHT Algorithm

This algorithm uses one Givens rotations and
one rank-2 stabilized Householder reflections
instead of three Givens rotations, and it starts
with the same partitionings of T and R as the
BBH algorithm. We rewrite Eq.(6) as follows:

R"R - R"R +y -y
B" R =R"R-x"x-2"2

Define G and H by the following relations

. y - R,

G ( R{) ( oT) 8)
x Ry )

H-| z |=| 0 (9)
R, o’

where @G is a series of products of plane

rotations to produce the upper triangular

and H is a Householder
reflection to make the upper triangular matrix
form R

Assume we know an mXn matrix . Define

matrix form of R,

T and two (n+1)X(m+1) orthogonal
matrices @ and @, as:
_ y y D
T=| T_, |= —
x C x
.
Q=L o)
’ 0 Q.
r
&= { g o)

The products of @_) T and @\3 T are

_ y y
QT = Q- = R, |.
c ol
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- D x
QT= Q- = |z (1D
x Rb
Define G as
¢ = ( G 0 )
07 1
From the relations of Eq.(8) and Eq.(10).
R,
6- ,T=10"] (12)
o’
and from the relations of Eq.(9) and Eq.(11),
R,
H- 0, T=| 0" (13)
o

By comparing Eq.(12) with Eq.(13), the
following relationship is acquired between the

first (n-1) rows of @@\2 and HQy:

G Q = HQ,

(14)

Eq.(8) and Eq.(9) show a way to compute
the upper triangular matrix R and Eq.(i4)
forms a base for the algorithm which
calculates the orthogonal matrix . This
algorithm needs mn + 5n° + O(n)
multiplications to compute B and IImn + 5n°
+ O(n) multiplications to compute both R and @.

3.3 HHT Algorithm

This algorithm uses one rank-3 hyperbolic
Householder reflection, and it starts with the
same partitionings of T and R as the BBH
algorithm. Let

We can rewrite Eq.(6) as
R' R= R R+xx -yy =58 0B (15

Then.

P R,
z OT

F-B = F- R, |~ OT (16)
v’ 0o’

where F is a product of n hyperbolic
Householder reflections F;, I1<i<n. with

respect to @ that transforms B into the upper
triangular matrix form R,.

Let the matrix T be partitioned as follows:

r=(c 1= ;' T.)

T= (T, D):( T, ;’Tl).

We want to find an mXn matrix @. with
orthogonal columns, such that

T

e-T= @-(c T~ ( R Ry 1) (17
o’ R.,
T
P Q’~(T.,ID)=(R1-1 2). (18)
0 R

Assume for a moment that we know an mxn
matrix @ with orthonormal columns such that

' Cc = ( (’)e,;). (19)
T

T _ z

Q"D = ( Rb)‘ (20)

Define an (m+2)x(n-1) augmented matrix T
and two (n+2)X(m+2) hypernormal matrices

H and H as
yT y' D
_ T _ C _
T = L= = »7
x K -
y y
foQ —f
"= h g —h
~h g h
OTT 10
7= QT 00
0" 01

where B and H satisfy the property of
hypernormality of Eq.(1). Form two products



BT and HT ftrom the definition of Q in
Eq.(19) and Eq.(20),

¥ Q¢ R,
_ c| - _ | e
n-7- R a ' - ol I (2D
yT OT O'r
75.7' | )
R-r-m| ;=]9P z (22)
x T ;
y y y

From Eq.(21) and Eq.(22) with Eq.(16), the
following relation is satisfied between the first

(n-1) rows.
BT=F- BT (23)
that is.
foQ —f
( In 0 0)' h gT —h
—h g h
oTT 1 0
== ( In 0 0)' F QT 0 0
00 01

At the j-th step, the jth row of H T is

compared with the j-th row of H T after
being multiplied by the J-th hyperbolic
Householder matrix F in order to get the
(G+1)-st row of @ Because the first element

in the jth row of H T. £ (ie. the jth
element of f) is unknown, the first element in
the (j+1)-st row of @7 can’t be calculated.
We use a primitive way to compute the first
column of "

The following relation is applied to get the
first row of @ in each step:

TI.J - Ql,l-’] “ R,
then,

= @ =(Ty - Qi Ry, )/ Ry (24)
The triangular matrix R is directly computed

from Eq.(16) based on the hyperbolic
Householder transformations. Eq.(23) and
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Eq.(24) form a basis for the algorithm which
computes the orthogonal matrix Q. The first
row of @ is obtained from Eq.(24), and the
rest are computed by Eq.(23). This algorithm
requires mn + 4p° + O(n) multiplications to
compute R and 9mn + 4.5n° + O(n)
multiplications to compute both K and @.

4. Implementation and Results

We implemented the QR algorithms of
Toeplitz matrices based on N.Tsao's modified
version of Householder transformations (13].
For implementation details. see [(5]. We
compared the SHT algorithm and the HHT
algorithm with the BBH algorithm and the
Cybenko's algorithm. The Cybenko's algorithm
needs 9mn + 10.5n° + O(n) multiplications to
obtain both R and Q. while BBH algorithm,
SHT algorithm, and the HHT algorithm need
13mn + 60’ + O(n), 11mn + 5n° + O(n). and
9.6mn + 4.5n° + O(n) multiplications.
respectively, to compute both R and @.

We measured the execution times on aone
node of the 1860 processor. Figures 1 and 2
compare the execution times of the algorithms

for square matrices and for rectangular

1] x
8 ~-=-- Cybenko's Algorithm ’
g 3 ——— BBH Algorithm s -
E | - - SHT Algorithm S
o ——  HHT Algodithm 3
X
£
2] < r
N L
[} T T ! '
0 32 64 96 128

Number of Rows

(Figure 1) Aigorithm Comparisons for Square Matrices
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(Figure 2) Algorithm Comparisons for Rectabular Matrices
(No. of rows are fixed to 64)

matrices, respectively, with the number of
columns fixed at m = 64.

For square matrices. the HHT algorithm
always has the best performance while
Cybenko's

performance.

algorithm  displays the worst

The HHT algorithm is about
30% faster than Cybenko's algorithm. Both
the SHT algorithm and The HHT algorithm is
superior to the BBH algorithm since it uses
the hyperbolic Householder reflections instead
The SHT algorithm can
save approximately 2% of the time, and the

of Givens rotations.

HHT algorithm can save about 7% of the time
compared to the BBH algorithm.

The HHT algorithm is always the fastest.
As n grows, the HHT algorithm saves more
time compared with Cybenko's algorithm. and
it saves about 7% of time compared to the
BBH algorithm.

5. Analysis and Conclusion

We tested those four algorithms of Toeplitz
matrices using an example in Luk and Qiao's
paper [10] in order to compare the accuracies
of QR decomposition, orthogonalities of @ and
triangularities of B. These are defined as,
Accur(@R)=I1T- Q- R!'r / I TlF,

Ortho(@) =1Q"-Q-11p / I,

Trian(T) =0T T- R Rip / 1T Ty,
and for Cybenko's algorithm the accuracies of
QR decomposition and triangularities of R’
are defined by:

Accur (QR) =IT-R'-Qup / VT -R s,
Trian (T) =1~ Thp / TN

As long as the test matrices are
well-conditioned, the numerical errors of
accuracies, orthogonalities and triangularities are

negligible. The test matrix,

(Tabhle 1> Accuracy comparisons of algorithms

l:Cond No. Criteria BBH SHT HHT | Cybenko
5 676402 Accuracy of QR 2.4008e-16 1.3107e-16 1.0933¢-16 | 4.6699%-14
(t = 10-01) Orthogonality of Q 7.8635e-12 3.3701e-12 5.5585e-12 1.4077e-14
Triangularity of T 1.1315e-16 6.7969¢-17 6,7969e‘17+ 6.2578e-14
5 68404 Accuracy of QR 1.5924e-16 1.467%-16 1.3802e-16 1.5882e-12
(t = 16-03) Orthogonality of Q 4.1585¢-08 4.1581e-08 8.6553e-08 1.4782¢-12
Triangularity of T 1,.1772¢-16 1.3931e-16 1.4420e-16 | 3.5950e-12
5 686 +06 Accuracy of QR 1.4335e-16 2.8505e-16 6.3715e-161 1.1282e-10 |
(t = 1e-05) Orthogonality of Q 1.3453e-03 2.2381e-03 1.3453¢-03 | 4.7105e-10
Triangularity of T 1.5823e-16 2.3856e-16 1.8638e-16 | 4.7625e-10
5 680408 Accuracy of QR 1.7716e-16 2.1937e-16 8.3823e-16 4.0752e-08
t = 1e-07) Orthogonality of Q 4.4440e-12 4.9206e-01 4.8147e-01 2.9617e-08
Triangularity of T 1.4149e-16 3.3337e-16 1.6729-16 7.0308e-08
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is positive definite but ill-conditioned, where ¢
is a small number. The test results for the
matrices are included in Table 1.

In the cases of ill-conditioned matrices. the
large condition numbers of the test matrices
cause the orthogonalities of @ to be lost.
Since the algorithms are based on the
T=R-Rand T = Q-R. the
triangularities of R and accuracies of @ - R are

equations 7.

kept in spite of the large condition numbers.

Another advantage of those SHT and HHT
algorithms is that R can be computed without
computing €. The required computations to
find R (mn + 5n° + O(n) for the SHT
algorithm, and mn + 4.5n° + O(n) for the
HHT algorithm) for square matrices are not
even half of the total computations of R and @
(1lmn + 5n° + O(n) for the SHT algorithm
and 9mn + 4.5n° + O(n) for the HHT
algorithm).

Bojanczyk and Choi [3) have implemented
and compared the BBH algorithm and the
Cybenko's algorithms on the iPSC/2 hypercube
machine. The results showed that BBH
algorithm is always superior to the Cybenko's
algorithm, and Cybénko’s algorithm is not
appropriate for parallel machines because it is
based on the Gram-Schmidt orthogonalization
procedure, which has a large communication
overhead. Since both SHT and HHT
algorithms are based on the same partitioning
as the BBH algorithm, they can be effectively
implemented on parallel machines.
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