온라인 리뷰는 소비자의 구매 의사결정 과정에서 중요한 역할을 담당하고 있으므로 소비자에게 유용하고 신뢰성이 있는 리뷰를 제공하는 것이 중요하다. 기존의 온라인 리뷰 유용성 예측 관련 연구는 주로 온라인 리뷰의 텍스트와 평점 정보 간의 일관성을 바탕으로 리뷰 유용성을 예측하였다. 그러나 기존 연구는 평점 정보를 스칼라로 표현했기 때문에 표현 수용력이 제한적이거나 평점 정보와 리뷰 텍스트 정보와의 상호작용을 제한적으로 학습하는 한계가 존재한다. 본 연구에서는 기존 연구의 한계점을 보완하기 위해 리뷰 텍스트와 평점 정보 간의 상호작용을 효과적으로 학습할 수 있는 CNN-RHP(CNN based Review Helpfulness Prediction) 모델을 제안하였다. 먼저, 리뷰 텍스트의 의미론적 특성을 추출하기 위해 multi-channel CNN을 적용하였다. 다음으로, 평점 정보는 텍스트 특성과 동일한 차원을 나타내는 독립된 고차원 임베딩 특성 벡터로 변환하였다. 최종적으로 요소별(Element-wise) 연산을 통해 리뷰 텍스트와 평점 정보 간의 일관성을 학습하였다. 본 연구에서는 제안된 CNN-RHP 모델의 성능을 평가하기 위해 Amazom.com에서 수집된 온라인 소비자 리뷰를 사용하였다. 실험 결과, 본 연구에서 제안한 CNN-RHP 모델이 기존 연구에서 제안된 여러 모델과 비교했을 때 우수한 예측 성능을 나타내는 것을 확인하였다. 본 연구의 결과는 온라인 전자상거래 플랫폼에서 소비자들에게 리뷰 유용성 예측 서비스를 제공할 때 유의미한 시사점을 제공할 수 있다.
대한민국은 인구 증가와 산업 발전의 결과로 많은 양의 오염물질을 배출하는 국가이자, 지리적 위치로 인해 월경성 대기오염의 심각한 영향을 받는 국가이다. 국내외에서 발생하는 오염물질이 대한민국의 대기오염에 큰 피해를 야기하는 상황에서, 대기 오염물질 배출원의 위치 정보는 대기 중 오염물질의 이동 및 분포를 파악하고, 국가 차원의 대기오염 관리 및 대응 전략을 수립하는 데 매우 중요하다. 본 연구는 이러한 배경을 바탕으로, 고해상도 광학위성 영상과 딥러닝 기반의 영상 분할 모델을 활용하여 대기오염 현황을 분석하는 데 필수적인 국내외 대기오염물질 배출원의 공간 정보를 효과적으로 획득하는 것을 목표로 수행되었다. 특히, 월경성 대기오염에 크게 기여하는 것으로 평가된 산업단지와 채석장을 주요 연구 대상으로 선정하였으며, 이들 영역에 대한 다목적실용위성 3호 및 3A호의 영상들을 수집하여 전처리한 후, 모델 학습을 위한 입력 및 라벨 데이터로 변환하였다. 해당 데이터를 활용하여 U-Net 모델을 학습시킨 결과, 전체 정확도는 0.8484, mean Intersection over Union (mIoU)은 0.6490을 달성하였다. 모델의 예측 결과 맵은 코스 어노테이션(Course Annotation) 방식으로 제작된 라벨 데이터보다 객체의 경계를 더욱 정확하게 추출하는 것으로 나타나, 데이터 처리 및 모델 학습 방법론의 유효성을 입증하였다.
최근 추천 시스템은 영화, 음악, 온라인 쇼핑 및 SNS 등 다양한 분야들에서 광범위하게 활용되고 있으며, 추천 시스템 분야에서 1세대 모델이라고 할수 있는 Apriori 모델을 통한 연관분석부터 최근 많은 주목을 받는 딥러닝 기반 모델들까지 많은 모델들이 제안되어왔다. 추천 시스템에서 기본 모델들은 협업 필터링(Collaborative filtering) 방법, 콘텐츠 기반 필터링(Content-based filtering) 방법, 그리고 이 두 방법을 통합적으로 사용하는 하이브리드 필터링(Hybrid filtering) 방법으로 분류될 수 있다. 하지만 이러한 모델들은 최근 점점 빠르게 변화하는 사용자-아이템 간의 상호관계와 빅데이터의 발전과 같은 내외 변화 요인들에 적응하지 못하면서 점점 분야 내 방법론으로써의 지위를 잃어가고 있다. 반면, 추천 시스템 내에서 딥러닝 기반 모델들은 비선형 변환, 표현학습, 순차적 모델링, 그리고 유연성과 같은 장점들 때문에 그 비중이 높아지고 있는 추세이다. 본 논문에서는 딥러닝 기반 추천 모델들 중에서도 사용자-아이템 간의 상호작용에 대해 보다 정확하고, 유연성 있게 분석이 가능한 순차적 모델링에 적합한 순환 신경망, 합성곱 신경망, 그리고 생성적 적대 신경망 중심 기반 모델로 분류하여 비교 및 분석한다.
격자 기반 암호화는 최악의 경우를 기반으로 한 강력한 보안, 비교적 효율적인 구현 및 단순성을 누리기 때문에 포스트 양자 암호화 방식 중 가장 실용적인 방식이다. 오류가 있는 링 학습(R-LWE)은 격자 기반 암호화(LBC)의 공개키암호화(Public Key Encryption: PKE) 방식이며, R-LWE의 가장 중요한 연산은 링의 모듈러 다항식 곱셈이다. 본 논문은 R-LWE 암호 시스템의 중간 보안 수준의 매개 변수 집합을 대상으로 하여 근사 컴퓨팅(Approximate Computing: AC) 기술을 기반으로 한 모듈러 곱셈기를 최적화하는 방법을 제안한다. 먼저 복잡한 로직을 간단하게 구현하는 방법으로 LUT을 사용하여 근사 곱셈 연산 중 일부의 연산 과정을 생략하고, 2의 보수 방법을 활용하여 입력 데이터의 값을 이진수로 변환 시 값이 1인 비트의 개수를 최소화하여 필요한 덧셈기의 개수를 절감하는 총 두 가지 방법을 제안한다. 제안된 LUT 기반의 모듈식 곱셈기는 기존 R-LWE 모듈식 곱셈기 대비 속도와 면적 모두 9%까지 줄어들었고, 2의 보수 방법을 적용한 모듈식 곱셈기는 면적을 40%까지 줄이고 속도는 2% 향상되는 것으로 나타났다. 마지막으로 이 두 방법을 모두 적용한 최적화된 모듈식 곱셈기의 면적은 기존대비 43%까지 감소하고 속도는 10%까지 감소하는 것으로 나타났다.
해양 탄성파 탐사 수행 시 송·수신 케이블의 구조적인 거리차에 의해서 필연적으로 발생하는 가까운 벌림(near offset)의 트레이스(trace)빠짐은 뒤따르는 탄성파 자료처리의 결과 및 영상화에 악영향을 끼치게 된다. 특히 가까운 벌림의 자료의 부재는 정확한 탄성파 영상화를 저해하는 다중반사파의 제거에 주요한 인자로 작용하므로 다중반사파의 영향력이 강해지는 천해 및 연안 탐사의 경우 빠짐을 효과적으로 해결해야 한다. 전통적으로 다양한 라돈 변환(Radon transform) 기반의 내삽 방법들이 가까운 벌림 빠짐의 해결책으로 제시되어왔으나 여러 한계점을 보여, 최근 이를 보완하기 위한 딥러닝(deep learning) 기반의 방법들이 제시되고 있다. 이 논문에서는 기존에 제시된 두 가지의 대표적인 딥러닝 기반의 접근법에 대해 면밀히 분석하여 앞으로 가까운 벌림 내삽 연구가 해결해야 하는 문제점들에 대해 깊이 있게 논의한다. 또한 기존의 딥러닝 기반의 트레이스 내삽 기술을 가까운 벌림 상황에 적용할 때 나타나는 한계점을 현장자료 실험을 통해 명확히 분석하여 향후 가까운 벌림 자료 빠짐의 문제는 내삽이 아닌 외삽으로 접근해야 한다는 것을 보여준다.
2019년 11월 중국 우한시에서 발병한 코로나19는 2020년 중국을 넘어 세계로 퍼져나가 2020년 3월에는 전 세계적으로 확산되었다. 코로나19와 같이 전염성이 강한 바이러스는 예방과 확진시 적극적인 치료도 중요하지만 우선 전파 속도가 빠른 바이러스인 점을 감안할 때, 확진 사실을 재빠르게 파악하여 전파를 차단하는 것이 더욱 중요하다. 그러나 감염여부를 확인하기 위한 PCR검사는 비용과 시간이 많이 소요되고, 자가키트검사 또한 접근성은 쉽지만 매번 수시로 받기에는 키트의 가격이 부담이 될 수밖에 없는 실정이다. 이러한 상황에서 기침 소리를 기반으로 코로나19 양성 여부를 판단할 수 있게 된다면 누구나 쉽게 언제, 어디서든 확진 여부를 체크할 수 있어 신속성과 경제성 측면에서 큰 장점을 가질 수 있을 것이다. 따라서 본 연구는 기침 소리를 기반으로 코로나19 확진 여부를 식별할 수 있는 분류 모델을 개발하는 것을 목적으로 하였다. 이를 위해, 본 연구에서는 먼저 MFCC, Mel-Spectrogram, Spectral contrast, Spectrogram 등을 통해 기침 소리를 벡터화 하였다. 이 때, 기침 소리의 품질을 위해 SNR을 통해 잡음이 많은 데이터는 삭제하였고, chunk를 통해 음성 파일에서 기침 소리만 추출하였다. 이후, 추출된 기침 소리의 feature를 이용하여 코로나 양성과 음성을 분류하기 위한 모델을 구축하였으며, XGBoost, LightGBM, FCNN 알고리즘을 통해 모델 학습을 수행하고 각 알고리즘별 성능을 비교하였다. 또한, 기침 소리를 다차원 벡터로 변환한 경우와, 이미지로 변환한 경우에 대해 모델 성능에 대한 비교 실험을 수행하였다. 실험 결과, 건강상태에 대한 기본정보와 기침 소리를 MFCC, Mel-Spectogram, Spectral contrast, 그리고 Spectrogram을 통해 다차원 벡터로 변환한 feature를 모두 활용한 LightGBM 모델이 0.74의 가장 높은 정확도를 보였다.
본 연구에서는 발화자가 동물이나 채소와 같은 일련의 단어를 무작위로 일 분 동안 말하는 한국어 음성 데이터에 대한 자동 음성 인식(ASR) 문제를 고려하였다. 발화자의 대부분은 60세 이상의 노인이며 치매 환자를 포함하고 있다. 우리의 목표는 이러한 데이터에 대한 딥러닝 기반 자동 음성 인식 모델을 비교하고 성능이 좋은 모델을 찾는 것이다. 자동 음성 인식은 컴퓨터가 사람이 말하는 말을 자동으로 인식하여 음성을 텍스트로 변환할 수 있는 기술이다. 최근 들어 자동 음성 인식 분야에서 성능이 좋은 딥러닝 모델들이 많이 개발되어 왔다. 이러한 딥러닝 모델을 학습시키기 위한 데이터는 대부분 대화나 문장 형식으로 이루어져 있다. 게다가, 발화자들 대부분은 어휘를 정확하게 발음할 수 있어야 한다. 반면에, 우리 데이터의 발화자 대부분은 60세 이상의 노인으로 발음이 부정확한 경우가 많다. 또한, 우리 데이터는 발화자가 1분 동안 문장이 아닌 일련의 단어를 무작위로 말하는 한국어 음성 데이터이다. 따라서 이러한 일반적인 훈련 데이터를 기반으로 한 사전 훈련 모델은 본 논문에서 고려하는 우리 데이터에 적합하지 않을 수 있으므로, 우리는 우리의 데이터를 사용하여 딥러닝 기반 자동 음성 인식 모델을 처음부터 훈련한다. 또한 데이터 크기가 작기 때문에 일부 데이터 증강 방법도 적용한다.
차량 운전자는 안전을 위해 항상 자신의 차량의 상태를 점검하고 파악하는 것이 필수이다. 하지만 운전자가 차량의 상태를 알고자 한다면 전문 업체에게 의뢰하기 때문에 운전자는 시간과 금전적인 비용이 지불되어야 한다. IT 기술의 발달로 인해 스마트폰의 다양한 기능을 이용하여 차량의 상태 점검을 할 수 있게 되었지만, 기존 스마트폰 자동차 진단 시스템은 자동차의 전문적인 지식을 학습해야 차량 상태를 알 수 있기 때문에 사용자들에게 진단기의 필요성이 부각되지 않는다. 본 논문에서는 OBD-II 프로토콜 변환 WiFi 커넥터를 통해 받아오는 OBD-II 정보를 차량 운전자에게 필요한 차량 소모품 교체 주기의 점검, 차량 문제점 진단 정보를 사용자에게 실시간으로 보여주며 손쉽게 사용할 수 있는 자동차 소모품 구현을 iPhone에서 구현 하였다.
기존의 전통적인 한국어 형태소 분석 및 품사 태깅 방법론은 먼저 형태소 후보들을 생성한 뒤 수많은 조합에서 최적의 확률을 가지는 품사 태깅 결과를 구하는 두 단계를 거치며 추가적으로 형태소의 접속 사전, 기분석 사전 및 원형복원 사전 등을 필요로 한다. 본 연구는 기존의 두 단계 방법론에서 벗어나 심층학습 모델의 일종인 sequence-to-sequence 모델을 이용하여 한국어 형태소 분석 및 품사 태깅을 추가 언어자원에 의존하지 않는 end-to-end 방식으로 접근하였다. 또한 형태소 분석 및 품사 태깅 과정은 어순변화가 일어나지 않는 특수한 시퀀스 변환과정이라는 점을 반영하여 음성인식분야에서 주로 사용되는 합성곱 자질을 이용하였다. 세종말뭉치에 대한 실험결과 합성곱 자질을 사용하지 않을 경우 97.15%의 형태소 단위 f1-score, 95.33%의 어절단위 정확도, 60.62%의 문장단위 정확도를 보여주었고, 합성곱 자질을 사용할 경우 96.91%의 형태소 단위 f1-score, 95.40%의 어절단위 정확도, 60.62%의 문장단위 정확도를 보여주었다.
본 논문은 웨이블릿 도메인 상에서 부모와 자식 부밴드간의 비독립성에 기반한 영상 스테그분석 방법을 제안한다. 제안한 방법은 커버 영상과 비밀 메시지가 삽입된 스테고 영상에 대해 3-레벨 Haar UWT 웨이블릿 변환을 수행하여 12개의 부밴드로 분해한 후 부모와 자식 부밴드간의 통계적 의존성을 분석한다. 이러한 통계적 의존성은 비밀 메시지가 삽입된 스테고 영상의 경우 커버 영상과 상당한 차이를 보이므로 커버 및 스테고 영상을 구분하기 위한 특징으로 사용될 수 있다. 따라서 본 논문에서는 분해된 12개의 각 부모와 자식 부밴드간의 조인트 특성 함수에 대해 첫 9차의 통계적 모멘트를 추출함으로써 총 72차의 통계적 조인트 모멘트를 특징 벡터로 사용한다. 추출된 특징 벡터는 MLP(다층 퍼셉트론 신경망) 분류기에 입력되어 커버 영상과 스테고 영상을 학습하고 판별한다. 제안 방법의 성능 평가를 위해 LSB 및 SS, BSS 삽입 방법에 의한 다양한 삽입률의 스테고 영상을 사용하였으며, 실험 결과 제안한 기법은 기존의 기법에 비해 삽입 정보 유무의 검출율을 향상시킬 뿐만 아니라 판별의 정확도가 높음을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.