Annual Conference on Human and Language Technology
/
2009.10a
/
pp.31-34
/
2009
본 연구의 목표는 비교 문장들을 일곱 가지 유형으로 자동 분류하는 것으로서, 비교 문장 추출, 비교 문장 유형 분류, 유형별 비교 관계 분석으로 이어지는 비교마이닝 세 단계 중 두 번째 과제이다. 본 연구에서는 변환 기반 학습(Transformation-based Learning) 기법을 이용한다. 자연어 처리 분야 여러 부문에서 사용되고 있는 변환 기반 학습은 오류를 감소시키는 최적의 규칙을 자동으로 생성하여 정답을 찾는 규칙 기반 학습 방법이다. 웹상의 다양한 도메인에서 추출한 비교 문장들을 대상으로 실험한 결과, 일곱 가지 비교 문장 유형을 분류하는데 있어서 정확도 80.01%의 우수한 성능을 산출하였다.
This paper investigates the teaching and learning of Linear function relating functional contexts and suggests the improved methods of representation-shift through this analysis. The methods emphasize the link between students' preacquired knowledge of mathematical representations and the way of using those. This methods are explanatory teaching, teaching and teaming based on modelling perspectives or tasks (interpretation, prediction, translation and scaling). We categorize the 8th grade middle school students' errors on the linear function relating real contexts and make a comparative study of the error-remedial effects and the teaching and teaming methods. We present the results of a study in which representation-shift methods based on modelling perspectives and tasks are more effective in terms of flexible connection of representations and error remediation. Also, We describe how students used modelling perspective-taking to explain and justify their conceptual models, to assess the quality of their models and to make connection to other mathematical representation during the problem solving focusing on the students' self-diagnosis.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.443-448
/
2018
웹검색 결과의 품질 향상을 위해서는 질의의 정확한 매칭 뿐만이 아니라, 서로 같은 대상을 지칭하는 한글 문자열과 영문 문자열(예: 네이버-naver)의 매칭과 같은 유연한 매칭 또한 중요하다. 본 논문에서는 문장대문장 학습을 통해 영문 문자열을 한글 문자열로 음차변환하는 방법론을 제시한다. 또한 음차변환 결과로 얻어진 한글 문자열을 동일 영문 문자열의 다양한 음차변환 결과와 매칭시킬 수 있는 발음 유사성 기반 부분 매칭 방법론을 제시하고, 위키피디아의 리다이렉트 키워드를 활용하여 이들의 성능을 정량적으로 평가하였다. 이를 통해 본 논문은 문장대문장 학습 기반의 음차 변환 결과가 복잡한 문맥을 고려할 수 있으며, Damerau-Levenshtein 거리의 계산에 자모 유사도를 활용하여 기존에 비해 효과적으로 한글 키워드들 간의 부분매칭이 가능함을 보였다.
A speech-act is a behavior intended by users in an utterance. Speech-act classification is important in a dialogue system. The machine learning and rule-based methods have mainly been used for speech-act classification. In this paper, we propose a speech-act classification method based on the combination of support vector machine (SVM) and transformation-based learning (TBL). The user's utterance is first classified by SVM that is preferentially applied to categories with a low utterance rate in training data. Next, when an utterance has negative scores throughout the whole of the categories, the utterance is applied to the correction phase by rules. The results from our method were higher performance over the baseline system long with error-reduction.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.347-350
/
2020
본 논문에서는 영상 변환 기술인 이산웨이블릿변환(Discrete Wavelet Transform, DWT)를 딥러닝 기반의 네트워크로 구현한다. 딥러닝 기술 중에도 CNN 기반으로 네트워크를 설계하였으며, 본 DWT 네트워크는 해상도에 의존적이지 않은 계층들로만 구성된다. 데이터세트를 구성할 때 파이썬의 라이브러리를 사용하여 레이블 데이터세트를 구성한다. 128×128크기의 gray-scale 영상을 입력으로 사용하고 이에 대응하는 레이블 데이터세트를 구성하여 1-level DWT를 수행하는 네트워크의 학습을 진행한다. 역방향 변환도 네트워크 설계 후 데이터세트를 구성하여 학습을 진행한다. 학습이 완료된 1-level DWT 네트워크를 반복적으로 사용하여 Multi-level DWT 네트워크를 구성한다. 또한 양자화에 의한 간단한 영상압축 실험을 진행하여 DWT 네트워크의 성능과 압축 등의 응용분야에 활용할 수 있음을 보인다. 설계한 DWT 네트워크의 1-level 순방향 변환 성능은 42.18dB의 PSNR을 보였고, 1-level 역방향 변환 성능은 50.13dB의 PSNR을 보였다.
한국어의 기반 명사구, 즉 비재귀적인 단순 명사구를 인식하는 비통계적인 규칙 기반 학습 기법을 제안한다. 학습 말뭉치에 기반 명사구에 대한 초기 예측이 표시되어 있고 목표 말뭉치에는 올바른 기반 명사구가 태그(tag)의 형식으로 표시되어 있다면, 규칙 기반 학습은 먼저 인접한 주위 형태소들의 다양한 문법적 정보를 나타내는 규칙 템플릿을 이용하여 기반 명사구 태그를 수정하는 규칙 후보들을 생성해 내고, 이 후보들 가운데 학습 말뭉치를 목표 말뭉치에 가장 가깝게 변환하는 일련의 규칙들을 차례로 얻어낸다. 국어정보베이스의 15만 단어 규모의 트리 태그 부착 말뭉치를 이용한 실험 결과 386개의 변환 규칙을 얻었으며, 이를 이용하여 90% 이상의 높은 기반 명사구 인식 정확도를 얻을 수 있다.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.567-569
/
2018
한국어의 경어체는 종결어미에 따라 구분하고, 서로 다른 경어체는 각각 고유한 경어 강도가 있다. 경어체 간의 어체 변환은 규칙기반으로 진행되어 왔다. 본 논문은 어체 변환을 위한 규칙 정의의 번거로움을 줄이고 어체 변환 데이터만을 사용한 심층 학습 기반의 어체 변환 방법을 제안한다. 본 연구는 '해요체-합쇼체' 쌍의 병렬 데이터를 이용하여 Attention-based Sequence-to-Sequence 모델을 바탕으로 한 어체 변환 모델을 학습하였다. 해당 모델을 학습하고 실험하였을 때, 정확도 91%의 우수한 성과를 얻을 수 있었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.160-161
/
2020
본 논문에서는 비디오 코딩 잔차신호를 보다 효율적으로 변환하기 위하여 오프라인으로 잔차신호를 학습하여 RD(Rate Distortion) Cost를 기반으로 분류된 몇 가지 변환 기저들을 생성하고, 비디오 복호화 과정 중 잔차신호를 역변환을 수행할 때 주변의 복호화가 완료된 신호들을 이용하여 최적의 변환 기저를 선택하여 해당 변환 기저로 역변환을 수행하여 효율적으로 잔차신호를 압축하는 방법에 대해 제안한다. 변환 기저 생성에는 분류된 잔차신호들에 대하여 2 차원 혹은 1 차원 KLT를 계산함으로써 얻어내어진다. 제안하는 방법은 VTM(VVC Test Model) version 10에서 실험하였으며 약 0.5% 정도의 성능향상을 보인다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.719-720
/
2023
본 연구에서는 온라인 저지 문항을 블록 프로그래밍 언어로 학습하기 위한 방안에 대해서 탐구하였다. 온라인 저지를 활용한 프로그래밍 교육은 알고리즘을 설계하는 추상화 과정과 이를 프로그래밍 언어로 작성하는 자동화 과정이 포함되며 이는 컴퓨팅 사고력 발달에 영향을 준다. 온라인 저지는 대부분 텍스트 프로그래밍 언어(이하, TPL)에서 지원되어 초보 학습자가 사용하기에 어려움이 있다. 블록 프로그래밍 언어(이하, BPL)를 기반으로 한 온라인 저지는 BPL로 작성한 것을 TPL로 변환하는 방법과 그래픽 기반 문제상황을 해결하는 방법이 있으며 TPL로 변환하는 것은 텍스트 기반 온라인 저지 문항을 사용할 수 있으나 사용하는 방법이 어렵다. 반면 그래픽 기반 문제 상황은 사용하는 방법이 쉽지만 문항이 제한적이고 순차적 사고가 강조된다. 이에 엔트리 '스터디'와 '나의 학급-과제'를 이용하면 자동 평가 기능은 없지만 학습자가 익숙한 환경에서 학습할 수 있고 교사는 문항을 직접 개발할 수 있으며 문제 제시, 예시 작품 제시, 블록 제한, 과제제출 등을 사용하여 BPL에서 온라인 저지 문항을 학습할 수 있다.
This paper proposes a method for Korean comparative sentence classification which is a part of comparison mining. Comparison mining, one area of text mining, analyzes comparative relations from the enormous amount of text documents. Three-step process is needed for comparison mining - 1) identifying comparative sentences in the text documents, 2) classifying those sentences into several classes, 3) analyzing comparative relations per each comparative class. This paper aims at the second task. In this paper, we use transformation-based learning (TBL) technique which is a well-known learning method in the natural language processing. In our experiment, we classify comparative sentences into seven classes using TBL and achieve an accuracy of 80.01%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.