본 논문은 실시간 파노라마를 위한 영상의 특징점 검출 방법을 제안한다. 파노라마 연구는 최근 실시간 지역탐색이나 DVR 등에 적용하는 연구가 최근 활발히 진행되고 있다. 특히 특징 점 검출은 파노라마를 이루는 가장 중요한 요소이다. 특징 점 검출을 위해서는 어떠한 명암 변화에도 특징점은 불변이어야 하며 이미지의 크기와 회전이 변화하더라도 불변의 점을 찾아야 한다. 기존 연구방법은 고차원적인 벡터와 많은 후보 점을 선점하기 때문에 연산량이 많고 수행시간이 길어 실시간에 활용하기에는 어려운 점이 있다. 따라서 본 논문은 보다 빠른 실시간 특징 점 검출을 위해 LoG 방법을 비트단위로 분할 후 결합하는 BLoG 방법을 제안하고 다양한 실험을 통하여 속도와 연산량 그리고 검출 성능에 대하여 비교한다.
본 논문은 실시간 파노라마를 위한 영상의 특징점 검출 방법을 제안한다. 파노라마 연구는 최근 실시간 지역탐색이나 DVR 등에 적용하는 연구가 최근 활발히 진행되고 있다. 특히 특징점 검출은 파노라마를 이루는 가장 중요한 요소이다. 특징점 검출을 위해서는 어떠한 명암 변화에도 특징점은 불변이어야 하며 이미지의 크기와 회전이 변화하더라도 불변의 점을 찾아야 한다. 기존 연구방법은 고차원적인 벡터와 많은 후보점을 선점하기 때문에 연산량이 많고 수행시간이 길어 실시간에 활용하기에는 어려운 점이 있다. 따라서 본 논문은 보다 빠른 실시간 특징점 검출을 위해 LOG 방법을 비트 단위로 분할 후 결합하는 BLOG 방법을 제안하고 다양한 실험을 통하여 속도와 연산량 그리고 검출 성능에 대하여 비교한다.
심전도에서 QRS complex와 R-wave의 검출은 부정맥 진단, 심전도의 특성점 검출 기준, heart rate variability(HRV) 측정에 있어서 중요하나, 시시각각 변화하는 생리적 변화와 여러 가지 노이즈로 인해 검출이 쉽지 않다 제안된 알고리듬에서는 wavelet filter banks를 이용하여 대칭적 enhanced 신호와 noise 와 같은 very high frequency 성분이 제거된 ECG에 근사화 된 approximated 신호를 얻는다. Enhanced 신호로부터 QRS complex의 위치를 검출하고, 검출된 위치의 주변에서 대칭적 wavelet의 특성이 반영된 dominant한 peak의 위치정보, 즉 R wave의 후보점을 얻는다. 이 위치 정보를 이용하여 enhanced 신호에서 각 peak에서의 크기, approxi-mated 신호에서 각 peak 주변에서의 기울기 변화, 기울기 부호 등을 고려하여 R-wave의 위치를 원래의 ECG 신호에서 얻는다. MIT/BIH database에 적용한 결과 99.6%의 QRS complex검출률과 92.9%의 R-wave 검출률을 보였다.
본 논문에서는 손 모션에 대하여 피부색 검출을 기반으로 전역적인 모션을 추적하고 모션 벡터를 생성하여 제스처를 인식하는 방법을 제안한다. 추적을 위하여 Shi-Tomasi 특징점 검출 방법과 Lucas-Kanade 옵티컬 플로우 추정 방법을 사용한다. 손 모션을 추적하는 경우 손의 모양이 다양하게 변화하므로 초기에 검출된 특징점을 계속적으로 추적하는 일반적인 방법으로는 손의 모션을 제대로 추적할 수 없다. 이에 본 논문에서는 프레임마다 새로운 특징점을 검출한 후 옵티컬 플로우를 추정하고 이상치(outlier)를 제거하여 손 모양의 변화에도 추적을 통한 모션 벡터 생성이 가능하도록 한다. 모션 벡터들로 인공 신경망을 사용한 판별 과정을 수행하여 최종적으로 손 모션 제스처에 대한 인식이 가능하도록 한다.
자동 얼굴 인식, 표정 인식과 같은 얼굴 영상과 관련된 다양한 연구 분야는 일반적으로 입력 얼굴 영상에 대한 정규화가 필요하다. 사람의 얼굴은 표정, 조명 등에 따라 다양한 형태변화가 있어 입력 영상 마다 정확한 대표 특징 점을 찾는 것은 어려운 문제이다. 특히 감고 있는 눈이나 작은 눈 등은 검출하기 어렵기 때문에 얼굴 관련 연구에서 성능을 저하시키는 주요한 원인이 되고 있다. 이에 다양한 변화에 강건한 눈 검출을 위하여 본 논문에서는 눈의 텍스처 정보를 이용한 눈 검출 방법을 제안한다. 얼굴 영역에서 눈의 텍스처가 갖는 특성을 정의하고 두 가지 형태의 Eye 필터를 정의하였다. 제안된 방법은 Adaboost 기반의 얼굴 영역 검출 단계, 조명 정규화 단계, Eye 필터를 이용한 눈 후보 영역 검출 단계, 눈 위치 점 검출 단계 등 총 4단계로 구성된다. 실험 결과들은 제안된 방법이 얼굴의 자세, 표정, 조명 상태 등에 강건한 검출 결과를 보여주며 감은 눈 영상에서도 강건한 결과를 보여준다.
동일 대상에 대한 두 영상의 등록을 위해서는 두 영상에 공통적으로 존재하는 특징점을 검출하고 검출된 특징점 간의 대응관계를 찾는 과정이 필수적이다. 본 논문에서는 화소의 밝기 변화를 측정할 수 있는 그레디언트 행렬의 고유치 기하평균에 기반한 새로운 특징점 검출기를 제안한다. 제안하는 특징점 검출기는 그레디언트 행렬의 두 고유치의 기하평균 크기에 비례하고 기하 평균 크기가 동일한 경유 두 고유치의 상대적인 차이에 비례하여 가변적으로 변하는 특성을 가진다. 제안한 특징점 검출기의 성능 평가를 위해 다양한 종류의 코너가 존재하는 합성 영상과 항공 영상을 기준 영상으로 사용하여 코너 검출의 위치 오차를 분석하였다. 제안한 검출기의 위치 오차는 Gaussian smoothing scale 조건하에서 대표적인 코너 검출기인 Harris detector의 위치 오차보다 작은 결과가 얻어졌다.
본 논문에서는 세선화 지문 영상의 순차적 레이블링을 이용하여 위치 이동, 크기 변화 그리고 회전에 무관한 새로운 지문 융선 특징 검출 알고리즘을 제안한다. 제안한 알고리즘은 먼저 지문의 중심점을 지나는 수직선을 이용하여 세선화 지문 영상의 융선을 순차적으로 레이블링 한다. 그리고 레이블링한 개개의 융선들로부터 특징을 검출한다 검출하는 특징은 융선의 종류와 융선에 존재하는 특징점의 융선 각도이다. 이러한 방법을 이용하여 지문 융선의 특징을 검출하면, 지문을 이루고 있는 여러 융선들의 종류를 알 수 있고, 각 융선에 존재하는 특징점의 종류 및 이들의 각도를 알 수 있다. 두 개의 세선화 지문 영상을 이용하여 실험한 결과, 제안하는 알고리즘이 위치 이동, 크기 변화 그리고 회전에 무관한 지문 융선 특징을 검출함을 확인하였다.
본 논문에서는 변화점 문제(change-point problem)에 대한 통계적 방법들을 사용하여 에지를 검출하고자 한다. 이를 위해 $n\timesn$ 부분영상을 선택하고 선택된 영상이 농도값에서 유의한 차이가 있는 두 개의 영역으로 분할하는 경계에 대응되는 에지점(edge point)을 포함하는지에 대해 가설 검정을 한다. 에지 검출에 사용되는 통계적 방법은 이표본 Kolmogorov-Smirnov 검정에 기초해서 얻은 제안된 방법과 기존의 우도비(likelihood ratio)방법,비모수적인 Wolfe-Schechtman 방법 등이다. 위 방법들의 성능을 평가하기 위해 접음영상과 잡음없는 영상에 대해 실험을 실시하고 비교 분석한다.
본 논문에서는 이동형 패럴랙스 배리어 방식의 모바일 3D 디스플레이에 응용하기 위해 개발된 시역계측알고리즘[1]을 실제시스템에 구현한 후 문제점을 분석하고, 그 문제점을 해결할 수 있는 새로운 방법을 제안한다. 본 연구팀에서 이동형 패럴랙스 배리어 방식의 모바일 3D 디스플레이에 응용하기 위해 개발한 이전의 시역계측기술[1]은 기존의 비올라-존스 얼굴 검출기[2]에 의한 얼굴검출 결과와 비올라-존스 얼굴 검출기의 단점을 보완하기 위해 새롭게 추가된 옵티컬-플로우 특징점 추적 알고리즘[3]에 의한 얼굴검출의 두 결과를 선형적으로 결합하여 시청자의 시역위치를 예측하였다. 하지만, 모바일 3D 디스플레이의 특성한 급격한 조명의 변화에서 옵티컬-플로우에 의한 특징점 추적알고리즘에 심각한 오류가 발생하는 문제점이 있다. 이러한 급격한 조명의 변화에 대한 문제점을 해결하기 위해 본 논문에서는 매 프레임마다 정확하게 옵티컬-플로우 얼굴 검출기의 정확도를 판단할 수 있는 방법을 제안하고, 다양한 실험을 통해 그 효과를 검증한다.
영상을 이용한 물체인식은 컴퓨터 비젼분야의 주요한 관심분야중 하나이다. 이중 특정기반 물체인식은 영상이 가지고 있는 특징점을 이용하는 방법으로 입력영상과 물체에 대한 질의 영상의 특징점을 검출하고 매칭을 수행하여 물체를 인식하게 된다. 특징점은 스케일, 회전, 어파인 변화 등에 변하지 않는 특징을 가지고 있는 점을 말한다. 이러한 특징점을 구하기 위하여 사용하는 방범으로는 SIFT(Scale Invariant Feature Transform)가 있다. SIFT는 스케일, 회선, 어파인 변화에 우수한 성능을 보여주기는 하나 많은 연산으로 인하여 처리속도가 느리다는 단점이 존재한다. 이에 본 논문에서는 SIFT를 사용한 특징기반 물체인식에서 속도 개선 방법에 대하여 제안하였다. 제안한 방법을 사용하였을 경우 물체인식을 위한 특징점을 검출하고 매칭을 수행하는데 소모된 시간이 줄어드는 것을 실험을 통하여 확인 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.