• Title/Summary/Keyword: 변형 LIGA 공정

Search Result 6, Processing Time 0.02 seconds

Modeling and Simulation of Microlens Fabricated by Modified LIGA Process (변형 LIGA 공정을 통해 제작된 Microlens의 모델링 및 시뮬레이션)

  • Kim, Dong-Seong;Lee, Seong-Geun;Yang, Sang-Sik;Gwon, Tae-Heon;Lee, Seung-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1923-1930
    • /
    • 2002
  • In this paper, we present modeling and simulation of microlens formation by means of a deep X-ray lithography followed by a thermal treatment of a PMMA (Polymethylmethacrylate) sheet. According to this modeling, X-ray irradiation causes the decrease of molecular weight of PMMA, which in turn decreases the glass transition temperature and consequently causes a net volume increase during the thermal cycle resulting in a swollen microlens. In this modeling, the free volume theory including the relaxation process during the cooling process was considered. The simulation results indicate that the modeling in this study is able to predict the fabricated microlens shapes and the variation pattern of the maximum heights of microlens which depends on the conditions of the thermal treatment. The prediction model could be applied to optimization of microlens fabrication process and to designing a micro mold insert for micromolding processes.

Modeling and Replication of Microlens Arrays Fabricated by a Modified LIGA Process (변형 LIGA 공정을 통해 제작된 마이크로 렌즈 어레이의 모델링 및 성형)

  • Kim D. S.;Lee H. S.;Lee B. K.;Yang S. S.;Lee S. S.;Kwon T. H.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.34-41
    • /
    • 2006
  • Microlens arrays were fabricated by a modified LIGA process composed of the exposure of a PMMA (Polymethylmethacrylate) sheet to deep x-rays and subsequent thermal treatment. A successful modeling and analyses for microlens formation were presented according to the experimental procedure. A nickel mold insert was fabricated by the nickel electroforming process on the PMMA microlens arrays fabricated by the modified LIGA process. For the replication of microlens arrays having various diameters with different foci on the same substrate, both hot embossing and microinjection molding processes have been successfully utilized with the fabricated mold insert. Replicated microlenses showed very good surface roughness with the order of 1 nm. The focal lengths of the injection molded microlenses were successfully estimated theoretically and also measured experimentally.

Modeling and Replication of Microlens Arrays Fabricated by a Modified LIGA Process (변형 LIGA 공정을 통해 제작된 마이크로 렌즈 어레이의 모델링 및 성형)

  • Kim D. S.;Lee H. S.;Lee B. K.;Yang S. S.;Lee S. S.;Kwon T. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.23-28
    • /
    • 2005
  • Microlens arrays were fabricated using a modified LIGA process based on the exposure of a PMMA (Polymethylmethacrylate) sheet to deep x-rays and subsequent thermal treatment. A successful modeling and analyses for microlens formation were presented according to the experimental procedure. A nickel mold insert was fabricated by the nickel electroforming process on the PMMA microlens arrays fabricated by the modified LIGA process. For the replication of microlens arrays having various diameters with different foci on the same substrate, the hot embossing and the microinjection molding processes have been successfully utilized with the fabricated mold insert. Fabricated microlenses showed good surface roughness than the mold insert. The focal lengths of the injection molded microlenses were successfully measured experimentally and also estimated theoretically.

  • PDF

Microlens Fabrication Method by the Modified LICA Process (변형된 LIGA 공정을 이용한 마이크로렌즈 제작방법)

  • Lee, Sung-Keun;Lee, Kwang-Cheol;Lee, Seung-S.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2450-2456
    • /
    • 2002
  • Microlenses and microlens arrays are fabricated using a novel fabrication technology based on the exposure of a resist (usually PMMA) to deep X-rays and subsequent thermal treatment. The fabrication technology is very simple and produces microlenses and microlens arrays with good surface roughness (less than 1 nm). The molecular weight and glass transition temperature of PMMA is reduced when it is irradiated with deep X-rays. The microlenses is produced through the effects of volume change, surface tension, and reflow during thermal treatment of irradiated PMMA. The geometry of the microlens is determined by parameters such as the X-ray dose applied to the PMMA, the diameter of the microlens, along with the heating temperature, heating time, and cooling rate in the thermal treatment. Microlenses are produced with diameters ranging from 30 to 1500 ${\mu}{\textrm}{m}$. The modified LIGA process is used not only to construct hemispherical microlenses but also structures that are rectangular-shaped, star-shaped, etc.

Microlens and Arrays Fabrication by the Modified LIGA and Hot Embossing Process (변형 DEEP X-ray 공정과 Hot Embossing 공정을 이용한 마이크로 렌즈 및 어레이의 제작)

  • 이정아;이현섭;이성근;이승섭;권태헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.228-232
    • /
    • 2003
  • Mircolens and microlens arrays are realized using a novel fabrication technology based on the exposure of a resist, usually PMMA, to deep X-rays and subsequent thermal treatment. Hot embossing process is also studied for mass production. The fabrication technology is very simple and produces microlenses and microlens arrays with good surface roughness of several nm. The molecular weight and glass transition temperature of PMMA is reduced when it is irradiated with deep X-rays. The microlenses were produced through the effects of volume change, surface tension. and reflow during thermal treatment of irradiated PMMA. A hot embossing machine is designed and manufactured with a servo motor transfer system. The hot embossing process follows the steps of heating mold to the desired temperature, embossing a mold insert on substrate. cooling mold to the de-embossing temperature. and de-embossing. Microlenses were produced with diameters ranging from 30 to 1500 ${\mu}{\textrm}{m}$. The surface X-ray mask is also fabricated to realize microlens arrays on PMMA sheet with a large area.

  • PDF

Formation of Microlens Array via a Modified LIGA Process: Molding and Modeling (변형 LIGA 공정을 이용한 마이크로 렌즈 어레이 개발: 몰딩 및 모델링)

  • Kim, D. S.;Lee, H. S.;S. S. Yang;Lee, B.K.;Lee, S.K.;T. H. Kwon;Lee, S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.465-469
    • /
    • 2003
  • Microlens arrays were fabricated using a novel fabrication technology based on the exposure of a PMMA (Polymethylmethacrylate) sheet to deep X-rays and subsequent thermal treatment. X-ray irradiation causes the decrease of molecular weight of PMMA, which in turn decreases the glass transition temperature and consequently causes a net volume increase during the thermal cycle resulting in a swollen microlens. A new physical modeling and analyses for microlens formation were presented according to experimental procedure. A simple analysis based on the new model is found to be capable of predicting the shapes of microlens which depend on the thermal treatment. For the replication of microlens arrays having various diameters with different foci on the same surface, the hot embossing and the microinjection molding processes has been successfully utilized with a mold insert that is fabricated by Ni-electroplating based on a PMMA microstructure of microlenses. Fabricated microlenses showed good surface roughness with the order of 1 nm.

  • PDF