• Title/Summary/Keyword: 변형 능력

Search Result 643, Processing Time 0.027 seconds

Inelastic Seismic Response of Asymmetric-Plan Self-Centering Energy Dissipative Braced Frames (비정형 셀프센터링 가새골조의 비탄성 지진응답)

  • Kim, Jin-Koo;Christopoulos, C.;Choi, Hyun-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.35-44
    • /
    • 2008
  • A self-centering energy-dissipative(SCED) bracing system has recently been developed as a new seismic force resistant bracing system. The advantage of the SCED brace system is that, unlike other comparable advanced bracing systems that dissipate energy such as the buckling restrained brace(BRB) system, it has a self-centering capability that reduces or eliminates residual building deformations after major seismic events. In order to investigate the effects of torsion on the SCED brace and BRB systems, nonlinear time history analyses were used to compare the responses of 3D model structures with three different amounts of frame eccentricity. The results of the analysis showed that the interstory drifts of SCED braced frames are more uniform than those of BRB frames, without regard to irregularity. The residual drift and residual rotation responses tended to decrease as irregularity increased. For medium-rise structures, the drift concentration factors(DCFs) for SCED systems were lower than those for BRB frames. This means that SCED-braced frames deform in a more uniform manner with respect to building height. The effect of the torsional irregularity on the magnitude of the DCFs was small.

Redistribution of Negative Moments in Beams Subjected to Lateral Load (횡하중에 대한 휨재의 부모멘트 재분배)

  • Eom, Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.731-740
    • /
    • 2011
  • Provisions for the redistribution of negative moments in KCI 2007 and ACI 318-08 use a method for continuous flexural members subjected to uniformly-distributed gravity load. Moment redistributions and plastic rotations in beams of reinforced concrete moment frames subjected to lateral load differ from those in continuous flexural members due to gravity load. In the present study, a quantitative relationship between the moment redistribution and plastic rotation is established for beams subjected to both lateral and gravity loads. Based on the relationship, a design method for the redistribution of negative moments is proposed based on a plastic rotation capacity. The percentage change in negative moments in the beam was defined as a function of the tensile strain of re-bars at the section of maximum negative moment, which is determined by a section analysis at an ultimate state using KCI 2007 and ACI 318-08. Span, reinforcement ratio, cracked section stiffness, and strain-hardening behavior substantially affected the moment redistribution. Design guidelines and examples for the redistribution of the factored negative moments determined by elastic theory for beams under lateral load are presented.

Evaluation of Rotation Capacity of Steel Moment Connections ConsideringInelastic Local Buckling - Model Development (비탄성 국부좌굴을 고려한 철골 모멘트 접합부 회전능력 평가를 위한 모델 개발)

  • Lee, Kyung Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.617-624
    • /
    • 2008
  • Well-designed steel moment connections will undergo local buckling before they exhaust their available rotation capacity, and inelastic post-buckling deformation plays a major role in defining the connection rotation capacity. An approximate analytical method to model strength degradation and failure of beam plastic hinges due to local buckling and estimation of the seismic rotation capacity of fully restrained beam-column connections in special steel moment-resisting frames under both monotonic and cyclic loading conditions is proposed in this study. This method is based on the plastic mechanism and a yield line plastic hinge (YLPH) model whose geometry is determined using the shapes of the buckled plastic hinges observed in experiments. The proposed YLPH model was developed for the improved WUF-W and RBS connections and validated in comparison with experimental data. The effects of the beam section geometric parameters on the rotation capacity were discussed in the companion paper (parametric studies).

Ductility Capacity of Shear-Dominated Steel Plate Walls (전단지배 강판벽의 연성능력)

  • Park, Hong Gun;Choi, In Rak;Jeon , Sang Woo;Kim, Won Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.457-468
    • /
    • 2006
  • An experimental study was performed to investigate the maximum energy dissipation and the ductility capacity of shear-dominated steel plate walls with thin web plates. Three specimens of three-story plate walls with thin web plates were tested. The parameters for the test specimens were the aspect ratio of the web plate and the shear strength of the column. A concentrically braced frame and a moment-resisting frme were a also tested for comparison. The steel plate walls exhibited much better ductility and energy dissipation capacity than the concentrically braced frame and the moment-resisting frame. The results showed that unlike other structural systems, the sh as well as strength, and can therefore be used as an effective earthquake-resisting system. A method of predicting the energy dissipation capacity of a steel plate wall was proposed.

Cyclic Loading Test on Connection of SRC Column-Composite Beam Consisting of H-Section and U-Section Members (SRC기둥-H형단면과 U형단면으로 구성된 합성보 접합부의 반복가력실험)

  • Kim, Young Ju;Bae, Jae Hoon;Ahn, Tae Sang;Kim, Jin Won;Ryu, Hong Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.263-275
    • /
    • 2014
  • In this study, connection of steel reinforced concrete(SRC) column and composite beam which consists of H-section and U-section members were tested under cyclic loading. An essential point of the composite beam is the structural performance of welded joint between the H-section and the U-section members. To improve the structural performance of joint of two beam members, vertical stiffeners, trapezoidal stiffeners, and top bars were used. Five full-scaled specimens were designed to study the effect of a number of parameters on cyclic performance of connections such as H-section beam size($H-500{\times}200{\times}10{\times}16$, $H-600{\times}200{\times}11{\times}17$), the presence of stiffeners and top bars, and the presence of no weld access hole(WAH) method. Based on the test results, deformation capacity of the specimens with H-500 series beam and H-600 series beam were 4% and 3% rotation angle, which is the requirement for the Special Moment Frame and Intermediate Moment Frame(IMF), respectively. Test result showed that deformation capacity of connection with stiffeners and top bars is greater than that of connection without stiffeners and top bars. Finally, energy dissipation capacity and strain profile of specimens were summarized.

Crack Control of Flexure-Dominant Reinforced Concrete Beams Repaired with Strain-Hardening Cement Composite (SHCC) Materials (변형경화형 시멘트 복합체를 활용한 휨항복형 철근콘크리트 보의 균열제어)

  • Cha, Jun-Ho;Park, Wan-Shin;Lee, Young-Oh;Kim, Sun-Woo;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.109-120
    • /
    • 2011
  • This paper presents an experimental study results on the crack control of flexure-dominant reinforced concrete beams repaired with strain-hardening cement composite (SHCC). Five RC beams were fabricated and tested until failure. One unrepaired RC beam was a control specimen (CBN) and remaining four speciemens were repaired with SHCC materials. The test parameters included two types of SHCC matrix ductility and two types of repair method (patching and layering). Test results demonstrated that RC beams repaired with SHCC showed no concrete crushing or spalling until final failure, but numerous hair cracks were observed. The control specimen CBN failed due to crushing. It is important to note that SHCC matrix can improve crack-damage mitigation and flexural behavior of RC beams such as flexural strength, post peak ductility, and energy dissipation capacity. In the perspective of crack width, crack widths in RC beams repaired with SHCC had far smaller crack width than the control specimen CBN under the same deflection. Especially, the specimens repaired with SHCC of PVA0.75%+PE0.75% showed a high durability and ductility. The crack width indicates the residual capacity of the beam since SHCC matrix can delay residual capacity degradation of the RC beams.

Design of Fuzzy Polynomial neural Networks Using Symbolic Encoding of Genetic Algorithms and Its Application to Software System (유전자 알고리즘의 기호 코딩을 이용한 퍼지 다항식 뉴럴네트워크의 설계와 소프트웨어 공정으로의 응용)

  • Lee In-Tae;O Seong-Gwon;Choi Jeong-Nae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.113-116
    • /
    • 2006
  • 본 논문은 소프트웨어 공정에 대하여 기호코팅을 이용한 유전자 알고리즘 기반 퍼지 다항식 뉴럴 네트워크 (Genetic Algorithms-based Fuzzy Polynomial Neural Networks ; gFPNN)의 모델을 제안한다. 유전자 알고리즘에는 이진코딩, 기호코팅, 실수코딩이 있다. 제안된 모델은 스트링의 길이에 따른 해밍절벽을 기호코딩으로 극복하였다. gFPNN에 전반부 멤버쉽 함수는 삼각형과 가우시안형의 멤버쉽 함수가 사용된다. 그리고 규칙의 후반부는 간략, 선형, 이차식 그리고 변형된 이차식 함수에 의해 설계된다. 실험적 예제를 통하여 제안된 모델의 성능이 근사화 능력과 일반화 능력이 우수함을 보인다.

  • PDF

A Study on RFID Authentication Protocol (RFID 인증 프로토콜에 관한 연구)

  • Yang, Sung-Hoon;Yang, Jin-Hee;Myoung, Keun-Hong;Seo, Jea-Hyun;Oh, Byeong-Kyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.11a
    • /
    • pp.1007-1010
    • /
    • 2005
  • RFID(Radio Frequency IDentification)란 일정(무선) 주파수 대역을 이용한 자동인식기술로 원거리에서도 대상물을 분석하여 개체의 정보를 읽거나 기록할 수 있는 시스템이다. 현재 RFID기술은 바탕으로 한 유비쿼터스(Ubiquitous)환경 및 물류시스템, 바코드 시스템을 사용하기 힘든 동물 태깅이나 고속도로 요금부과, 도난 방지, 치매환자의 보호관리 등에 사용할 수 있다는 점으로 사회 전반에 걸쳐 그 사용 폭을 넓혀 가고 있다. 그러나 RFID의 낮은 연산능력과 기억능력의 특징상 정보 보안이나 개인의 프라이버시측면에서 여러 문제들을 발생시킨다. 본 논문에서는 기존의 RFID 인증 프로토콜들을 비교 분석하고, 태그와 리더기 사이의 정보 전송 중 공격자에 의한 정보의 변형을 방지하는 RFID 인증 프로토콜을 제안한다.

  • PDF

Massage application at calf muscles for ankle flexibility (발목의 유연성 증진을 위한 종아리 근육 마사지 적용)

  • Roh, Hyo-lyun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2017.05a
    • /
    • pp.343-344
    • /
    • 2017
  • 본 연구의 목적은 종아리 근육에 마사지를 적용하여 발목의 유연성과 균형에 미치는 영향을 알아보고자 실시하였다. 연구대상자는 건강한 대학생 32명으로 마사지 적용방법에 따라 세 그룹으로 나누어 한쪽 종아리에 각 5분간, 총 10분 동안 마사지를 적용하였다. 마사지 적용 전, 후로 발목의 유연성을 측정하기 위하여 Star excursion balance test를 실시하였다. 종아리 근육 마사지 중재 후에 두 그룹 모두 기능적 뻗기 검사와 변형된 한발 서기 검사에서 마사지전보다 유의하게 증가한 것으로 나타났다. 그러나 마사지 종류에 따른 차이는 나타나지 않았다. 마사지 종류에 관계없이 종아리 근육 마사지는 발목관절의 유연성과 균형능력에 효과가 나타났다. 따라서 종아리 마사지의 적용은 균형능력을 향상시키는 방법으로 보인다.

  • PDF

Evaluation on Seismic Performance of the Columns in Concrete Moment Frames (모멘트 골조 기둥의 구조 성능평가)

  • 한상환;박성일
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.513-520
    • /
    • 2002
  • This study is to evaluate the structural performance of columns in concrete moment frame. For this purpose the results of previous experimental studies were collected and compared. The experimental variables considered in this study are existance of lap splice within the possible plastic hinge region during an earthquake, ratio of longitudinal reinforcement axial load and the transverse reinforcement ratio. The strength, deformation, ductility capacity and the length of plastic hinge are compared in this study.