• Title/Summary/Keyword: 변형 능력

Search Result 642, Processing Time 0.023 seconds

Lattice Shear Reinforcement for Slab-Column Connection Subjected to Unbalanced Moment (불균형모멘트를 받는 슬래브-기둥 접합부를 위한 래티스 전단 보강)

  • Park, Hong-Gun;Kim, You-Ni;Song, Jin-Kyu;Kim, Sun-Kyu;Lee, Chul-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.301-312
    • /
    • 2007
  • A slab-column connection is susceptible to brittle punching shear failure, which may result in the necessity of shear reinforcement. In the present study, to investigate the earthquake resistance of newly developed lattice shear reinforcement, experimental study was performed for interior slab-column connections subjected to cyclic loading. For comparison, specimens with existing shear reinforcement method such as stud rail, shear band and stirrup were also tested. The test result showed that the structural capacity of the lattice shear reinforcement was superior to those of the existing methods and was greater than the code-specified strength. On the other hand, the existing methods did not significantly improve the shear strength of the specimens. The shear strengths of the existing methods were much less than the code-specified shear strength.

Behavior of Concrete-Filled Square Tubular Beam-Column under Cyclic Load (반복하중을 받는 콘크리트충전 각형강관 보-기둥의 거동)

  • Kang, Chang-Hoon;Moon, Tae-Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.387-395
    • /
    • 2000
  • The purpose of this research is to evaluate the capacity of strength and plastic deformation of those members, and provide experimental data on the seismic behavior of these members as a basis for developing guidelines for designing seismically resistant concrete-filled steel tubular columns. Eighteen cantilever-type specimens were tested under constant axial load and cyclically lateral load as models of bottom columns in high-rise building. The parameters studied in the test program included, are width-thickness ratio of steel tube, slenderness ratio (Lo/D) and axial force ratio. From the test results, the effects of parameters on the strength, the deformation capacity, energy absorption capacity are discussed. The specimen flexural capacity under combined axial and lateral loading was found to be almost accurately predicted by criteria AIJ and AISC-LRFD providing conservative results. Therefore KSSC for encased composite column can be applied to the concrete filled column if composite section and elastic modulus are modified according to AIJ and AISC-LRFD. Finally, the proposed flexural capacity considering confinement effects is a food agreement on the tests results.

  • PDF

An Experimental Study on the Seismic Performance of Shear Connections and Rib Plate H Beam to Column Connections (전단접합 및 리브 플레이트로 보강한 H형 보-기둥 접합부의 내진성능에 관한 실험적 연구)

  • Oh, Kyung Hyun;Seo, Seong Yeon;Kim, Sung Yong;Yang, Young Sung;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.569-580
    • /
    • 2005
  • The postbeam joint connection of the existing steel structure moment flexible frame system did not produce sufficient seismic resistance during the earthquakes in Northridge and Kobe, and it sustained brittle fracturing on the joint connection. This study was performed to execute the high-tensile bolt share connection of H-beams web and the full-scale experiment as a parameter of the existing reinforcement of H-flange rib, by making the shape of the existing joint connection. This experiment was performed to determine the extent of the decrease of the number of high-tensile bolts and how to improve workability of the two-phase shear connection of web beam. In addition, this study was performed to enhance the seismic resistant capacity through the enforcement of rib plates. As a result of the experiment of two-phase shear connection of H-beam web and of joint connection to be reinforced by rib plates, the results of this study showed that the initial stiffness, energy-dissipation capacity, and rotational capacity of plasticity was higher than the existing joint connection. As to the rate of increasing the strength and deformation capacity, there were differences between the tension side and compression side because of the position of shear tap. However, as a whole, they have shown excellent seismic resistant capacity. Also, all the test subjects exceeded 4% (rate of delamination), about 0.029 rad (total plastic capacity), and about 130% (maximum strength of joint connection) of fully plastic moment for the original section. Accordingly, this study was considered as it would be available in the design more than the intermediate-level of moment flexible frame.

An Experimental Study on Crack Detection of RC Structure using Measured Strain (측정변형률을 이용한 RC 구조물의 균열검출에 관한 실험적 연구)

  • Park, Ki-Tae;Park, Hung-Seok;Lee, Kyu-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.193-199
    • /
    • 2002
  • Structral crack of RC structure generally occurs when the tension stress by applied load is larger than tension resistance of concrete, and it means deterioration of structure and the decrease of load resistance. Because structural crack of structure can occur critical damage to structure occasionally, the research on crack detection algorithm of RC structure is needed for assurance of structural safety and effective maintenance of structure. In this paper, we executed the laboratory test on measuring strain of RC beam's tension and compression zone, using strain gauge which is widely used on strain measurement of civil structure. By using measured strain, we analyzed strain change, elastic modulus change, and neutral axis change to detect crack of RC beam. As a result, we proposed the simple and effective crack detection algorithm using trends of neutral axis position change.

Strength and Deformation Characteristics of Steel Fiber Reinforced Columns (강섬유 보강 기둥의 강도 및 변형 특성)

  • 장극관;이현호;양승호
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.49-57
    • /
    • 2002
  • As composite materials, the addition of steel fiber with concrete significant)y improves the engineering properties of structural members, notably shear strength and ductility. Flexural strength, fatigue strength, and the capacity to resist cracking are also enhanced. Especially the strengthening effect of steel fiber in shear is to prevent the brittle shear failure. In this study, shear-strengthening effect of steel fiber in RC short columns were investigated from the literature surveys and 10th specimem's member test results. From the test results, following conclusions can be made; the maximum enhancement of shear-strengthening effect can be achieved at about 1.5 % of steel fiber contents, shear strength and ductility capacity were improved remarkably in comparison to stiffness and energy dissipation capacity in steel fiber reinforced concrete.

Influence of Strain-Hardening Cement Composite's Tensile Properties on the Seismic Performance of Infill Walls (변형경화형 시멘트 복합체의 인장성능에 따른 끼움벽의 내진성능)

  • Cha, Jun-Ho;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.3-14
    • /
    • 2012
  • This paper describes experimental results on the seismic performance of SHCC (strain-hardening cement composite) infill wall for improving damage tolerance capacity of non-ductile frame. To investigate the effect of tensile strain capacity and cracking behavior of SHCC materials on the shear behavior of SHCC infill wall, three infill walls were fabricated and tested under cyclic loading. The test parameter in this study is a type of cement composites; concrete and SHCCs. The two types of SHCC materials were prepared for infill walls. In order to induce crack damages into the mid-span of the infill wall, each infill wall had two 100-mm-deep-notches on both sides. Test results indicated that SHCC infill walls showed superior crack control capacities and much larger drift ratios at the peak loads than RC (reinforced concrete) infill wall, as expected. In particular, due to the bridging actions of the reinforcing fibers, SHCC matrix used in this study would delay the stiffness degradation of infill wall after the first inclined cracking. Moreover, from the damage classes based on the cracks' maximum width in the infill walls, it was observed that PIW-SHD specimen possessed nearly threefold seismic capacities compared to PIW-SLD specimen. Also, from the results on the strain of diagonal reinforcements, it can be concluded that the SHCC matrix would resist a part of tensile stresses transferred along steel rebar in the infill wall.

Effect of Loading Rate on the Deformation Behavior of SA508 Gr.1a Low Alloy Steel and TP316 Stainless Steel Pipe Materials at RT and 316℃ (상온과 316℃에서 SA508 Gr.1a 저합금강 배관과 TP316 스테인리스강 배관의 변형거동에 미치는 하중속도의 영향)

  • Kim, Jin Weon;Choi, Myung Rak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.383-390
    • /
    • 2015
  • This study conducted tensile tests on SA508 Gr.1a low alloy steel and SA312 TP316 stainless steel piping materials under various strain rates at room temperature (RT) and $316^{\circ}C$ to investigate the effects of loading rate on the deformation behavior of nuclear piping materials. At RT, the deformation behavior for both pipe materials showed a typical loading rate dependence, i.e., the strength increased and the ductility decreased as the loading rate increased. At $316^{\circ}C$, however, the strength and elongation of SA508 Gr.1a low alloy steel decreased as the loading rate increased, and its reduction of area non-linearly varied with the loading rate. For SA312 TP316 stainless steel, the strength, elongation, and reduction of area at $316^{\circ}C$ were almost the same regardless of the loading rate. At both temperatures, the strain hardening capacity was nearly independent of the loading rate for SA508 Gr.1a low alloy steel, while it decreased with increasing loading rate for SA312 TP316 stainless steel.

A Numerical Model to Evaluate Fire-Resistant Capacity of the Reinforced Concrete Members (화재에 손상된 철근콘크리트 부재의 수치모델 및 내화성능해석)

  • Hwang, Jin-Wook;Ha, Sang-Hee;Lee, Yong-Hoon;Kim, Wha-Jung;Kwak, Hyo-Gyoung
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.497-508
    • /
    • 2013
  • This paper introduces a numerical model which can evaluate the fire-resistant capacity of reinforced concrete members. On the basis of the transient heat transfer considering the heat conduction, convection and radiation, time-dependent temperature distribution across a section is determined. A layered fiber section method is adopted to consider non-linear material properties depending on the temperature and varying with the position of a fiber. Furthermore, effects of non-mechanical strains of each fiber like thermal expansion, transient strain and creep strain are reflected on the non-linear structural analysis to take into account the extreme temperature variation induced by the fire. Analysis results by the numerical model are compared with experimental data from the standard fire tests to validate an exactness of the introduced numerical model. Also, time-dependent changes in the resisting capacities of reinforced concrete members exposed to fire are investigated through the analyses and, the resisting capacities evaluated are compared with those determined by the design code.

Displacement Ductility Ratio of Reinforced Concrete Bridge Piers with Lap-splices (주철근 겹침이음 비율에 따른 RC교각의 연성능력 평가)

  • Park, Kwang-Soon;Ju, Hyeong-Seok;Shin, Hyun-Mock;Kim, Moon-Kyum
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.6
    • /
    • pp.1-12
    • /
    • 2008
  • As internal and external seismic experiment results, the seismic performance of RC bridge piers is largely dependent on the ratio of lap-spliced bars to all longitudinal reinforcing bars in plastic hinge regions, and confining effects of transverse reinforcements. Capacity and displacement ductility of non-seismically designed existing RC piers are reduced by lap splices in plastic hinge regions. The provision for the lap splice of longitudinal reinforcing bars was not specified in KBDS (Korean Bridge Design Specifications) before the implementation of 1992 seismic design code, but the ratio of lap-spliced bars to all longitudinal reinforcing bars in plastic hinge regions is restricted to 50% in the 2005 version of KBDS. This paper presents a seismic assessment of RC piers at lap-splicing ratios of 0%, 50%, and 100%. Through a comparison of experimental and analytic results of RC piers, we introduce an appropriate ultimate strain of confined concrete in plastic hinge regions with lap-splices, and propose a method for estimating displacement ductility ratios of non-seismically designed existing RC piers using fiber element analysis.

The Study of Environmental Risk Assessment for Fluorescent Genetically Modified Silkworms (형광단백질 발현 유전자변형 누에(Bombyx mori )의 환경위해성 평가연구)

  • Kim, Hyunjung;Jung, Chuleui;Goo, Taewon;Yi, Hoonbok
    • Korean journal of applied entomology
    • /
    • v.53 no.3
    • /
    • pp.199-207
    • /
    • 2014
  • It is true that the proper environmental risk assessments for many GM (Genetically Modified) insects almost have not been executed in Korea. Therefore, we tested the environmental risk assessment about GM silkworms if there is any difference between GM silkworms and non-GM silkworms by the following three measurements. First, we measured their mobility in the breeding environment conditions with food and without food. Secondly, we measured their viability at the artificial extreme environmental conditions (low and high temperature and humidity, absent/present of foods,) after escaping from their breeding environments. Thirdly, we observed the number of laying eggs and their hatchability between GM silkworms and non-GM silkworms with four different pair experiments. The mobility of GM silkworms and non-GM silkworms statistically did not differ, and the egg productivity and hatchability were not also different. The hatchability by couple of GM female silkworms and non-GM male silkworms was lower than by non-GM male and female couple between the GM silkworms and non-GM silkworms, and there was statistically different. Relatively, the viability of GM silkworms was lower than non-GM silkworms. We could not exactly test for viability of silkworms in low temperature conditions because of their hibernating. Although there was any difference in viability and hatchability between GM silkworms and non-GM silkworms, all ability of GM silkworms was lower than non-GM silkworms. Conclusively, the environmental risk of GM silkworm was relatively lower than non-GM silkworm in this study.