• Title/Summary/Keyword: 변형센서

Search Result 558, Processing Time 0.032 seconds

Application of Combined-Type Sensors for the Behavioral Measurement of Concrete Beams (콘크리트 보의 거동 측정을 위한 조합형 센서의 활용)

  • Kim, Yun-Tae;Kim, Sang-Chel
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.454-461
    • /
    • 2003
  • This study addressed a procedure to carry out an experimental study on a behavior of simple and continuous concrete beams. For this purpose, sample concrete beams were fabricated and sensors for the measurement of strains and deflections were attached both on the surface of the beams and inside them. Two types of sensors were used to measure strains associated with loading: electric resistance strain sensors and fiber optic sensors. Displacement gauges were also attached on the bottoms of beams to investigate the behavior of beams more rationally. The behavior of the beams was then evaluated throughout the results measured from different sensors while they were subject to steady loading up to failure. From results of this study, it was found that concurrent use of sensors and displacement gauges is helpful in investigating the behavior of concrete beams more effectively. Especially, combined-type strain sensors specifically fabricated in this experiment were found not to be affected by the occurrence of cracks so significantly and to be very effective in monitoring strains of concrete structure. It was also observed that beams show nonlinear force-displacement relationship and reinforcing bars take charge of resisting the external force once cracks occur in concrete beams.

Development of Estimated Model for Axial Displacement of Hybrid FRP Rod using Strain (Hybrid FRP Rod의 변형률을 이용한 축방향 변위추정 모형 개발)

  • Kwak, Kae-Hwan;Sung, Bai-Kyung;Jang, Hwa-Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.639-645
    • /
    • 2006
  • FRP (Fiber Reinforced Polymer) is an excellent new constructional material in resistibility to corrosion, high intensity, resistibility to fatigue, and plasticity. FBG (Fiber Bragg Grating) sensor is widely used at present as a smart sensor due to lots of advantages such as electric resistance, small-sized material, and high durability. However, with insufficiency of measuring displacement, FBG sensor is used only as a sensor measuring physical properties like strain or temperature. In this study, FRP and FBG sensors are to be hybridized, which could lead to the development of a smart FRP rod. Moreover, developing the estimated model for deflection with neural network method, with the data measured through FBG sensor, could make conquest of a disadvantage of FBG sensor - uniquely used for sensing strain. Artificial neural network is MLP (Multi-layer perceptron), trained within error rate of 0.001. Nonlinear object function and back-propagation algorithm is applied to training and this model is verified with the measured axial displacement through UTM and the estimated numerical values.

Development of Fiber Optic Total Reflected Extrinsic Fabry-Perot Interferometric Sensor (광섬유 전반사형 외부 패브리-패로 센서의 개발)

  • 권일범;최만용;문한규;김민수
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.254-255
    • /
    • 2000
  • 광섬유 전반사형 외부 패브리-패로(TR-EFPI total reflected extrinsic Fabry-Perot inteferometric) 센서를 개발하여 외부 물리량의 변화 크기와 방향을 간편하게 알아낼 수 있도록 하였다. 이 TR-EFPI 센서 탐촉자는 한 개의 단일모드 광섬유와 한 개의 거울도금 광섬유를 모세 유리관 안에 고정하여 공기간극을 형성함에 의하여 만들어진다. 또한 외부 물리량은 변형률을 측정할 수 있도록 알루미늄 시험편의 표면에 부착하고 만능시험기를 사용하여 하중을 증감시키면서 변형률의 변화를 측정하도록 하였다. (중략)

  • PDF

Design of a stable stair-moving robot using wheel deformation and sensors (바퀴변형과 센서를 이용한 안정적 계단이동 로봇의 설계)

  • Park, Sung-Hyun;Kim, Sang-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.611-614
    • /
    • 2020
  • 본 논문은 안정적으로 계단을 주행하는 로봇에 관한 연구로 바퀴변형 시스템의 설계 방법을 제시하고, 기존의 계단극복 로봇의 문제점 중 하나인 계단 주행 시 발생하는 추락을 IMU센서와 서보모터를 이용한 방지법과 아날로그 IR센서를 통한 간단하고 빠르게 계단을 감지하는 방법을 제시한다.

Estimation of Dynamic Displacements of a Bridge using FBG Sensors (FBG센서를 이용한 교량의 동적변위 추정)

  • Shin, Soobong;Yun, Byeong-Goo;Kim, Jae-Cheon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.101-109
    • /
    • 2009
  • An algorithm is proposed for estimating dynamic displacements of a bridge by using FBG sensors and by superposing some measurable low modes. Modal displacements are obtained from the beam theory and the generalized coordinates are deduced from the strains measured by FBG sensors. By considering flexural and torsional modes occurred in bridges only as flexural modes of a simply supported beam by separating a bridge into multiple girders or parts, the proposed algorithm can be applied to various types of bridges. Guidelines are provided theoretically for determining the number of modes and the number of strain gages to be used. The proposed algorithm has been examined through simulation studies on various types of bridges, laboratory experiments on a model bridge, and field tests on a simple span PC Box girder bridge. Through the simulation study, the effects of the error in the vibration modes and measurement noise on estimating the dynamic displacements are analyzed.

Measurement of Dynamic Strains on Composite T-Joint Subjected to Hydrodynamic Ram Using PVDF Sensors (PVDF 센서를 이용한 수압램 하중을 받는 복합재 T-Joint의 동적 변형률 측정)

  • Go, Eun-Su;Kim, Dong-Geon;Kim, In-Gul;Woo, Kyeongsik;Kim, Jong-Heon
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.238-245
    • /
    • 2018
  • The hydrodynamic ram (HRAM) phenomenon is one of the main types of ballistic battle damages of a military aircraft and has great importance to airframe survivability design. The HRAM effect occurs due to the interaction between the fluid and structure, and damage can be investigated by measuring the pressure of the fluid and the dynamic strains on the structure. In this paper, HRAM test of a composite T-Joint was performed using a ram simulator which can generate HRAM pressure. In addition, calibration tests of PVDF sensor were performed to determine the circuit capacitance and time constant of the measurement system. The failure behavior of the composite T-Joint due to HRAM pressure was examined using the strain gauges and a PVDF sensor which were attached to the surface of the composite T-Joint.

A Study on Monitoring of Floating Structure using Fiber Optic Sensor (광섬유 센서를 이용한 플로팅구조물의 모니터링에 관한 연구)

  • Han, Min-Bae;Jung, Keun-Hoo;Song, Hwa-Cheol;Park, Da-Hye;Park, Soo-Yong;Sohn, Kyung-Rak
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.199-202
    • /
    • 2011
  • 플로팅구조물은 열악한 해양환경상태에 있기 때문에 구조물응답에 대한 실시간 모니터링 기술을 적용하여 구조안전성을 확보해야 한다. 특히 기존의 전기 저항식 스트레인 게이지 단점을 극복한 광섬유 센서를 이용하여 실시간 모니터링 시스템 개발에 관한 연구가 필요하다. 본 논문에서는 플로팅구조물의 축소 모델에 광섬유 센서 중 하나인 FBG센서를 부착하고 실험용 수조에 설치하여 광학 스펙트럼 분석기를 통해 중심파장을 측정한 후 변형률을 계산하였다. 또한 유한요소 모델을 유한요소 해석 프로그램인 ABAQUS를 사용하여 모델링하고 유한요소 해석을 통해 변형률을 출력하고 실험결과와 해석 결과를 비교하여 광섬유 센서를 이용한 플로팅구조물의 실시간 모니터링을 위한 기초자료를 제공하고자 한다.

  • PDF

Measurement of compressive and tensile strain in concrete structure with FBG sensor fixture (광섬유격자센서의 콘크리트구조물에의 고정과 압축 및 인장 변형의 측정)

  • Kim, Ki-Soo;Kim, Young-Jin;Moon, Dae-Jung;Kim, Seong-Woon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.149-152
    • /
    • 2008
  • FBG sensor system is applied to the concrete lining structure in Taegu subway. Near the structure, the power cable tunnel construction started. We wanted to measure the deformation of the structure due to the construction by the FBG sensor. The applied sensor has the gauge length of 1 meter to overcome the inhomogeneity of the concrete material with enough length. In order to fix tightly to the structure, the partially stripped parts of the sensor glued to the package and slip phenomenon between fiber and acrylate jacket was prevented. Prestrain of the sensor was imposed by controlling the two fixed points with bolts and nuts in order to measure compressive strain as well as tensile strain. The behavior of subway lining structure could be monitored very well

  • PDF

Effects of Cyclic Thermal Load on the Signal Characteristics of FBG Sensors Packaged with Epoxy Adhesives (주기적인 반복 열하중이 패키징된 FBG 센서 신호 특성에 미치는 영향)

  • Kim, Heonyoung;Kang, Donghoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.4
    • /
    • pp.313-319
    • /
    • 2017
  • Fiber optics sensors that have been mainly applied to aerospace areas are now finding applicability in other areas, such as transportation, including railways. Among the sensors, the fiber Bragg grating (FBG) sensors have led to a steep increase due to their properties of absolute measurement and multiplexing capability. Generally, the FBG sensors adhere to structures and sensing modules using adhesives such as an epoxy. However, the measurement errors that occurred when the FBG sensors were used in a long-term application, where they were exposed to environmental thermal load, required calibration. For this reason, the thermal curing of adhesives needs to be investigated to enhance the reliability of the FBG sensor system. This can be done at room temperature through cyclic thermal load tests using four types of specimens. From the test results, it is confirmed that residual compressive strain occurs to the FBG sensors due to an initial cyclic thermal load. In conclusion, signals of the FBG sensors need to be stabilized for applying them to a long-term SHM.

Simultaneous Measurement of Strain and Damage Signal of Composite Structures Using a Fiber Bragg Grating Sensor (광섬유 브래그 격자 센서를 이용한 복합재 구조물의 변형률 및 파손신호 동시 측정)

  • Koh Jong-In;Bang Hyung-Joon;Kim Chun-Gon;Hong Chang-Sun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.95-102
    • /
    • 2004
  • For the simultaneous measurement of strain and damage signal, a fiber Bragg grating sensor system with a dual demodulator was proposed. One demodulator using a tunable Fabry-Perot filter can measure low-frequency signal such as strain and the other demodulator using a passive Mach-Zehnder interferometer can detect high-frequency signal such as damage signal or impact signal. Using a proposed fiber Bragg grating sensor system, both the strain and damage signal of a cross-ply laminated composite beam under tensile loading were simultaneously measured. Analysis of the strain and damage signals detected by single fiber Bragg grating sensor showed that sudden strain shifts were induced due to transverse crack propagation in the 90 degree layer of composite beam and vibration with a maximum frequency of several hundreds of kilohertz was generated.

  • PDF