• Title/Summary/Keyword: 변형률 속도

Search Result 496, Processing Time 0.027 seconds

Metamorphosis Hierarchical Motion Vector Estimation Algorithm for Multidimensional Image System (다차원 영상 시스템을 위한 변형계층 모션벡터 추정알고리즘)

  • Kim Jeong-Woong;Yang Hae-Sool
    • The KIPS Transactions:PartB
    • /
    • v.13B no.2 s.105
    • /
    • pp.105-114
    • /
    • 2006
  • In ubiquitous environment where various kinds of computers are embedded in persons, objects and environment and they are interconnected and can be used in my place as necessary, different types of data need to be exchanged between heterogeneous machines through home network. In the environment, the efficient processing, transmission and monitoring of image data are essential technologies. We need to make research not only on traditional image processing such as spatial and visual resolution, color expression and methods of measuring image quality but also on transmission rate on home network that has a limited bandwidth. The present study proposes a new motion vector estimation algorithm for transmitting, processing and controlling image data, which is the core part of contents in home network situation and, using algorithm, implements a real time monitoring system of multi dimensional images transmitted from multiple cameras. Image data of stereo cameras to be transmitted in different environment in angle, distance, etc. are preprocessed through reduction, magnification, shift or correction, and compressed and sent using the proposed metamorphosis hierarchical motion vector estimation algorithm for the correction of motion. The proposed algorithm adopts advantages and complements disadvantages of existing motion vector estimation algorithms such as whole range search, three stage search and hierarchical search, and estimates efficiently the motion of images with high variation of brightness using an atypical small size macro block. The proposed metamorphosis hierarchical motion vector estimation algorithm and implemented image systems can be utilized in various ways in ubiquitous environment.

Determination of shear wave velocity profiles in soil deposit from seismic piezo-cone penetration test (탄성파 피에조콘 관입 시험을 통한 국내 퇴적 지반의 전단파 속도 결정)

  • Sun Chung Guk;Jung Gyungja;Jung Jong Hong;Kim Hong-Jong;Cho Sung-Min
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.125-153
    • /
    • 2005
  • It has been widely known that the seismic piezo-cone penetration test (SCPTU) is one of the most useful techniques for investigating the geotechnical characteristics including dynamic soil properties. As the practical applications in Korea, SCPTU was carried out at two sites in Busan and four sites in Incheon, which are mainly composed of alluvial or marine soil deposits. From the SCPTU waveform data obtained from the testing sites, the first arrival times of shear waves were and the corresponding time differences with depth were determined using the cross-over method, and the shear wave velocity profiles (VS) were derived based on the refracted ray path method based on Snell's law and similar to the trend of cone tip resistance (qt) profiles. In Incheon area, the testing depths of SCPTU were deeper than those of conventional down-hole seismic tests. Moreover, for the application of the conventional CPTU to earthquake engineering practices, the correlations between VS and CPTU data were deduced based on the SCPTU results. For the empirical evaluation of VS for all soils together with clays and sands which are classified unambiguously in this study by the soil behavior type classification Index (IC), the authors suggested the VS-CPTU data correlations expressed as a function of four parameters, qt, fs, $\sigma$, v0 and Bq, determined by multiple statistical regression modeling. Despite the incompatible strain levels of the down-hole seismic test during SCPTU and the conventional CPTU, it is shown that the VS-CPTU data correlations for all soils clays and sands suggested in this study is applicable to the preliminary estimation of VS for the Korean deposits and is more reliable than the previous correlations proposed by other researchers.

  • PDF

Synthetic Application of Seismic Piezo-cone Penetration Test for Evaluating Shear Wave Velocity in Korean Soil Deposits (국내 퇴적 지반의 전단파 속도 평가를 위한 탄성파 피에조콘 관입 시험의 종합적 활용)

  • Sun, Chang-Guk;Kim, Hong-Jong;Jung, Jong-Hong;Jung, Gyung-Ja
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.3
    • /
    • pp.207-224
    • /
    • 2006
  • It has been widely known that the seismic piezo-cone penetration test (SCPTu) is one of the most useful techniques for investigating the geotechnical characteristics such as static and dynamic soil properties. As practical applications in Korea, SCPTu was carried out at two sites in Busan and four sites in Incheon, which are mainly composed of alluvial or marine soil deposits. From the SCPTu waveform data obtained from the testing sites, the first arrival times of shear waves and the corresponding time differences with depth were determined using the cross-over method, and the shear wave velocity $(V_S)$ profiles with depth were derived based on the refracted ray path method based on Snell's law. Comparing the determined $V_S$ profile with the cone tip resistance $(q_t)$ profile, both trends of profiles with depth were similar. For the application of the conventional CPTu to earthquake engineering practices, the correlations between $V_S$ and CPTu data were deduced based on the SCPTu results. For the empirical evaluation of $V_S$ for all soils together with clays and sands which are classified unambiguously in this study by the soil behavior type classification index $(I_C)$, the authors suggested the $V_S-CPTu$ data correlations expressed as a function of four parameters, $q_t,\;f_s,\;\sigma'_{v0}$ and $B_q$, determined by multiple statistical regression modeling. Despite the incompatible strain levels of the downhole seismic test during SCPTu and the conventional CPTu, it is shown that the $V_S-CPTu$ data correlations for all soils, clays and sands suggested in this study is applicable to the preliminary estimation of $V_S$ for the soil deposits at a part in Korea and is more reliable than the previous correlations proposed by other researchers.

A Study on the Fatigue Failure Behavior of Cheon-Ho Mt. Limestone Under Cyclic Loading (천호산 석회암의 반복하중에 의한 피로파괴거동에 관한 연구)

  • Lee, Jong-Uk;Rhee, Chan-Goo;Kim, Il-Jung;Kim, Yeong-Seok
    • Nuclear Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.98-109
    • /
    • 1992
  • In this study uniaxial cyclic loading tests were performed on Cheon-Ho Mt. Limestone specimens to investigate the fatigue failure behavior. The loading rate was kept constantly at 760kg/$\textrm{cm}^2$/sec under cyclic loading. In order to reveal the fatigue behavior for each rock type, the test results were mutually compared with previous studies carried out on Indiana Limes-tone and Seong-Ju Sandstone. Fatigue data is presented in the form of S-N curves, which illustrate the relationship of maximum applied stress(S) to the number of cycles(N) required to produce failure. For the purpose of comparing the S-N curves for each rock type, the test data were formulated up to 10$^4$cycles and the correlation coefficients(R) on Cheon-Ho Mt. Limestone and Seong-Ju Sandstone specimen are 0.886 and 0.983, respectively. All three rock specimens were found to have shorter fatigue life at higher applied stress levels. The fatigue life for each rock type was considered as no less than 81.5, 70 and 74.8%, for Cheon-Ho Mt. Limestone, Indiana Limestone and Seong-Ju Sandstone, respectively. The comparison in static strength for monotonic loaded specimens and specimens which did not fail even after 10$^4$cycles indicated that the increasing rate of strength was about 6.18 and 10.96% , for Cheon-Ho Mt. Limestone and Indiana Limestone, respectively. Poisson's ratio and volumetric strain for Cheon-Ho Mt. Limestone and Seong-ju Sandstone, tended in all the cases to rapidly increase at higher stress levels and with an increase in number of cycles. This increasing trend becomes rapid and obvious just before failure. Also Poisson's ratio and volumetric strain for each stress level were compared and analyzed at the first cycle and the cycle prior to failure.

  • PDF

Constant Rate of Strain Consolidation Test with Rowe Cell on the Clay with Sand Seam (샌드심이 존재하는 점토에 Rowe Cell를 이용한 일정변형률 압밀시험)

  • Kim, Jae-Hong;Kim, Chan-Kee;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.5
    • /
    • pp.5-13
    • /
    • 2017
  • The sand layer deposited in clay is called a sand seam, which is formed by inflow of sands due to river flooding or slope failure in the middle of sinking and sediment of clay. When the sand seam exists in clay layer, the drainage direction changes from one way to both ways, and the time of consolidation may be reduced. However, it is not clearly proved due to lack of studies of sand seam and currently is not reflected in the design of soft soil improvement. As a fundamental study about sand seam, the oedometer tests and constant rate of strain tests with Rowe cell were conducted on clay specimens with sand seam. For tests, a frozen method was specially designed for making the sand seam. It was concluded that the test results showed the sand seam affects the coefficient of consolidation of clay. If the thickness of sand seam exceeds 0.05 times of specimen height, the sand seam works as drainage layer of pore water horizontally as well as vertically, and consequently the consolidation is accelerated.

Flexural Behavior of Large-Diameter Composite PHC pile Using In-Filled Concrete and Reinforcement (속채움 콘크리트와 철근으로 보강된 대구경 합성 PHC말뚝의 휨성능 평가)

  • Bang, Jin-Wook;Park, Chan-Kyu;Yang, Seong-Yeong;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.109-115
    • /
    • 2016
  • A demand of high bearing capacity of piles to resist heavy static loads has been increased. For this reason, the utilization of large diameter PHC piles including a range from 700 mm to 1,200 mm have been increased and applied to the construction sites in Korea recently. In this study, in order to increase the flexural strength capacity of the PHC pile, the large diameter composite PHC pile reinforced by in-filled concrete and reinforcement was developed and manufactured. All the specimens were tested under four-point bending setup and displacement control. From the strain behavior of transverse bar, it was found that the presence of transverse bar was effective against crack propagation and controlling crack width as well as prevented the web shear cracks. The flexural strength and mid-span deflection of LICPT specimens were increased by a maximum of 1.08 times and 1.19 times compared to the LICP specimens. This results indicated that the installed transverse bar is in an advantageous ductility performance of the PHC piles. A conventional layered sectional analysis for the pile specimens was performed to investigate the flexural strength according to the each used material. The calculated bending moment of conventional PHC pile and composite PHC pile, which was determined by P-M interaction curve, showed a safety factor 1.13 and 1.16 compared to the test results.

Analysis of Plate Motion Parameters in Southeastern South Korea using GNSS (GNSS를 활용한 한반도 동남권 지역의 지각 변동 파라미터 분석)

  • Lee, Seung Jun;Yun, Hong Sic
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.697-705
    • /
    • 2020
  • This paper deals with an analysis of crustal movement for the sourthern part of Korean peninsula using GNSS (Global Navigation Satellite System) data. An earthquake of more than 5.0 occurred in the southeastern region of the Korean Peninsula, and it is necessary to evaluate the risk of earthquakes in various ways.In order to reveal long-term tectonic movement patten in Pohang and Gyeongju provinces, we derived crustal movement parameters related with elastic theory. We used GAMIT/GLOBK for analyzing seven-year interval GNSS data of CORS (Continuously Operating Reference Stations). The azimuth of velocity vectors trended generally about 110° with an mean magnitude of 31mm/yr.The main characteristics of the strain change for seven-year in Korea obtaind from our study. Direction of the principal axis of the maximum compression is ENE-WSW as a whole, through there are some exceptions. The mean rate of the maximum shear strain change is (0.11±0.07)μ/yr, that is approximately one third that of Chubu district, Central Japan. Taking into account our results, the mean rate of maximum shear in southern part of Korean peninsula is considered as reasonable. The mean azimuth of principal strain is about (85.4°±26.8°). There are some exceptions of azimuth because the average azimuth differ from the left and right side in Yangsan fault which are about (73.2°±21.5°) and (105.2°±17.0°) respectively, It is noteworthy that the high seismicity areas in the southern part of Korea peninsula almost coincides with the area of large strain rate. As a conclusion, it could be stated that the our study represents the characteristics of crustal deformation in the southern part of peninsula, and contributes to the researches on earthquake disaster management.

Greenhouse Gas Reduction and Marine Steel Plate Tensile Properties When Using Propylene Flame in the Cutting Process (프로필렌 화염을 이용한 선박용 철판 가공 시 온실가스 감소 효과 및 재료의 인장 특성에 미치는 영향 연구)

  • Kim, Do Hyeon;Kim, Dong Uk;Seo, Hyoung-Seock
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.639-647
    • /
    • 2022
  • The use of flames is essential in cutting, bending, and welding steel during a ship's construction process. While acetylene fuel is commonly used in steel cutting and the manufacturing process in shipyards, the use of propane as an alternative fuel has recently been increasing, due to the lower risk of explosion and propane's relatively low calorific value. However, propane fuel has a relatively slow processing speed and high slag generation frequency, thereby resulting in poor quality. Propylene is another alternative fuel, which has an excellent calorific value. It is expected to gain wider use because of its potential to improve the quality, productivity, and efficiency of steel processing. In this study, the combustion characteristics of propane and propylene fuel during steel plate processing were analyzed and compared. The reduction of greenhouse gases and other harmful gases when using propylene flame was experimentally verified by analyzing the gases emitted during the process. Heat distribution and tensile tests were also performed to investigate the effects of heat input, according to processing fuel used, on the mechanical strength of the marine steel. The results showed that when propylene was used, the temperature was more evenly distributed than when propane fuel was used. Moreover, the mechanical tests showed that when using propylene, there was no decrease in tensile strength, but the strain showed a tendency to decrease. Based on the study results, it is recommended that propylene be used in steel processing and the cutting process in actual shipyards in the future. Additionally, more analysis and supplementary research should be conducted on problems that may occur.

A Verification of Tip-over Analysis of a Dry Concrete Storage Cask under The Accident Conditions by a Test for the 1/3 Scale Model (사고조건하의 건식저장용기 전복해석검증을 위한 1/3 축소모델의 시험)

  • Kim Dong-Hak;Seo Ki-seog;Lee Ju-Chan;Jung Ki-Jung;Cho Chun-Hyung;Choi Byung-Il;Lee Heung-Young
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.237-246
    • /
    • 2005
  • A tip-over test of the 1/3 scale model is conducted to verify the tip-oner analysis of a dry concrete storage cask under a hypothetical accident condition. The tip-oner analysis is executed using the velocity at each point which are determined from the initial angular velocity as the initial conditions of the model just before the impact. To confirm the structural integrity of the canister of a dry concrete storage cask, the non-detective testing such as Liquid Penetrants testing and Ultrasonic Testing are conducted. The strains and tile accelerations acquired by the tip-over test are compared with those by the analysis to verify the tip-over analysis. The lid of a storage calk are plastically deformed at the impact point. Liquid

  • PDF

Simulataneous X-ray Diffraction Measurements of the Antiferroelectric-ferroelectric Phase Transition of PLZT under Electric Field (전장하에서 PLZTd의 반강유전-강유전 상전이의 동시적 X-선 회절 측정)

  • 고태경;조동수;강현구
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.11
    • /
    • pp.1292-1300
    • /
    • 1996
  • In-site X-ray diffraction measurements under electric field up to 20kV/ cm were carried out on PLZT (x/70/30) with x=7.5, 8.0, 8.5, and 10.5 All of PLZT belonged to cubic phases. At x=7.5, 8.0 and 8.5 PLZT behaved as an antiferroelectric under low electric fields up to 4-8 kV/cm. PLZT became ferroelectric at the higher electric fields. The high-temperature measurements on the dielectric constants of PLZT with x=7.5, 8.0 and 8.5 showed that they were similar to relaxor ferroelectrics and underwent a diffuse phase transition from antiferroelectrics to paraelectrics at 50-7$0^{\circ}C$. Their P-E hysteresis curves confirmed that they were antifer-roelectrics. The broad distribution of Curie points suggests that there is a significant disorder of cations and vacances in the crystal structure of those PLZT due to La-substitution. The variation of the lattice strain of PLZT(10.5/70/30) with electic field was very small and did not show any hysteresis confirming that it was paraelectric. The degree of the electric-induced strain variation decreased as La doping increased. In PLZT(7.5/70/30) the intensity of 110 reflection changes sensitively by applying electric field. Some domains with polarization parallel to [110] appeared to be developed in the field-induced ferroelectric phase of the PLZT.

  • PDF