• Title/Summary/Keyword: 변형률 속도

Search Result 496, Processing Time 0.03 seconds

Static Creep Behaviour of Super-Duralumin(Al 2024) (초 두랄루민(Al 2024)의 정적인 크리프 거동)

  • 황경충;윤종호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.22-27
    • /
    • 2004
  • Super-duralumin has widely been used as the part materials of aerospace and automobile industry because it has high specific strength and also is light. But, we have little design data about the creep behaviors of the alloy. Therefore, in this study, every creep test under four constant stress conditions have been conducted for four temperature conditions. A series of creep tests had been performed to get the basic design data and life prediction of super-duralurnin products and we have gotten the following results. First, the stress exponents showed the descending trend as the test temperatures increase. Secondly, the creep activation energy gradually decreased as the stresses become bigger. Thirdly, the constant of Larson-Miller parameters on this alloy was estimated about 6. And last, the fractographs at the creep rupture showed both the brittle fracture due to the transgranular rupture.

  • PDF

Dynamic Stress/Strain Measurement and Analysis of the Aluminum Alloy Road Wheel through F1 Circuit Ultimate Driving Test (F1 서킷 극한주행시험을 통한 알루미늄 알로이 휠의 동응력/변형률 계측 및 분석)

  • Lee, Chang Soo;Park, Cheol Soon;Park, Hyung Bae;Jung, Sung Pil;Chung, Won Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.612-617
    • /
    • 2014
  • It is generally known that the automotive road wheel involves the non-proportional multiaxial loading condition, therefore the measuring dynamic stress and strain in driving state is very important to predict an endurance characteristic of the automotive road wheel. In this study, the ultimate driving test using F1 circuit with respect to 2 kinds of velocity conditions have been carried out in order to measure dynamic stress, strain of the wheel and acceleration of a vehicle. Based on the measured results, the characteristics of dynamic stress generation have been analyzed, and factors which have effect on the dynamic stress generation have been studied.

  • PDF

Differences on Tension, Compression JC Constitutive Equation Parameter of Strain Rate Effect for Ti-6Al-4V (Ti-6Al-4V 변형률 속도 변화에 따른 인장, 압축형 JC 구성방정식 변수의 변화)

  • Woo, Sang-Hyun;Lee, Chang-Soo;Park, Lee-Ju
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.19-24
    • /
    • 2017
  • This paper is concerned with a test method that can be used to investigate the parameters of the Johnson-Cook constitutive model. These parameters are essential for accurately analyzing material behavior under impact loading conditions in numerical simulation. Ti-6Al-4V alloy (HCP crytal structure) was used as a specimen for the experiments. In the $10^{-3}-10^3/s$ strain rate range, three types of experimental methods (convention, compression and tension) were employed to compare the differences using MTS-810, SHPB and SHTB. Finite element analysis results when applying these parameters were displayed along with the experiment results.

Estimating Strain Rate Dependent Parameters of Cowper-Symonds Model Using Electrohydraulic Forming and Artificial Neural Network (액중 방전 성형과 인공신경망 기법을 활용한 Cowper-Symonds 구성 방정식의 변형률 속도 파라메터 역추정)

  • Byun, H.B.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.81-88
    • /
    • 2022
  • Numerical analysis and dynamic material properties are required to analyze the behavior of workpiece during an electrohydraulic forming (EHF) process. In this study, EHF experiments were conducted under three conditions (6, 7, 8 kV). Dynamic material properties of Al 5052-H34 were inversely estimated through an ANN (Artificial Neural Network) model constructed based on LS-Dyna analysis results. Parameters of Cowper-Symonds constitutive equation, C and p, were used to implement dynamic material properties. By comparing experimental results of three conditions with ANN model results, optimized parameters were obtained. To determine the reliability of the derived parameters, experimental results, LS-Dyna analysis results, and ANN results of three conditions were compared using MSE and SMAPE. Valid parameters were obtained because values of indicators were within confidence intervals.

Bending-based Adaptive Sampling for Efficient Hair Simulations (효율적인 헤어 시뮬레이션을 위한 굽힘 기반 적응형 샘플링)

  • Yun, Ju-Young;Kim, Donghui;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.353-355
    • /
    • 2022
  • 본 논문에서는 외력에 의해 헤어가 움직일 때, 전체가 아닌 변형률이 큰 부분에 입자 제어점을 추가하여 베지에 곡선을 그리는 적응형 헤어 시뮬레이션 기법을 제안한다. 일반적인 정규화 샘플링을 통한 물리 시뮬레이션은 헤어의 움직임에 대한 정확도가 높은 반면, 계산량이 증가하고 메모리를 많이 차지하기 때문에 비효율적이다. 이 문제는 굽힘이 일어나는 특정 부분만 활용한 적응형 샘플링을 통해 해결할 수 있으며, 메모리뿐만 아니라 속도 측면에서도 모두 우수한 성능을 보인다. 본 논문에서 제안하는 방법을 이용한 굽힘 샘플링 기법은 헤어의 굽힘 패턴에 따라 실시간으로 표현되며 자연스럽고 부드러운 실제 헤어와 유사한 결과를 보여준다.

  • PDF

Method for Determining Thickness of Rubber Fenders of a Tripod Type Offshore Wind Turbine Substructure (해상풍력 삼각지주형 하부구조물의 충격손상방지용 고무펜더의 두께결정 방법)

  • Lee, Kang-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.490-496
    • /
    • 2012
  • The main object of this research is to minimize the shock effects which frequently result in fatal damage in offshore wind turbine on impact of barge. The collision between offshore wind turbine and barge is generally a complex problem and it is often impractical to perform rigorous finite element analyses to include all effects and sequences during the collision. On applying the impact force of a barge to the offshore wind turbine, the maximum acceleration, internal energy, and plastic strain are calculated for each load case using the finite element method. A parametric study is conducted with the experimental data in terms of the velocity of barge, thickness of the offshore wind turbine, and thickness and Mooney-Rivlin coefficient of the rubber fender. Through the analysis proposed in this study, it is possible to determine the proper size and material properties of the rubber fender and the optimal moving conditions of barge.

Analysis on the Behavior of Reticulated Root Piles for Reinforcing Footing using Computer Program (컴퓨터 프로그램을 이용한 기초보강용 그물식 뿌리말뚝의 거동 분석)

  • 박영호;변광욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.348-361
    • /
    • 1991
  • When reinforcing strip footing on a sand 8round with reticulated root piles, reinforcing effect depends on the length , number, cross sectional area, penetration angle, spacing, and Young's modulus of piles. the mode of action of reinfocement tendons in soil isn't one of carring developed tensile stresses but of anisotropic(uni-directional) reduction or even supression of one normal strain rate. R. H. Bassett and N. C. Last proposed that the reinforcement should be located on the direction of minor strain rate which coincides with the tensile strain rate in the velocity characteristics. Based on this proposal the author carried out a series of 2 - dimentional finite element analysis which varies the parameters mentioned above.

  • PDF

Estimation of Moving Loads by Measuring Dynamic Response (동적 거동계측을 통한 이동하중 추정)

  • Cho, Jae Yong;Shin, Soobong;Choi, Kwang-Kyu;Kwon, Soon-Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.129-137
    • /
    • 2007
  • An algorithm is proposed for estimating axle loads of trucks moving over a bridge by measuring dynamic responses. The bridge was modeled by a beam structure in the current applications of the proposed algorithm. Among the state vectors, measured acceleration was used and displacement was computed from measured strain at the same location. Nodal force vectors were computed by using a ready-made database of equivalent nodal force transformation matrix. The algorithm was examined through simulation studies and laboratory experiments. The effects of measurement noise and velocity error were investigated through simulation studies.

Mechanical Properties of Alkali-Activated Slag-Based Concrete Using Lightweight Aggregates (경량골재를 사용한 알칼리 활성 슬래그 콘크리트의 역학적 특성)

  • Yang, Keun-Hyeok;Oh, Seung-Jin;Song, Jin-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.405-412
    • /
    • 2008
  • Six alkali-activated (AA) concrete mixes were tested to explore the significance and limitations of developing an environmental friendly concrete. Ground granulated blast-furnace slag and powder typed sodium silicate were selected as source material and an alkaline activator, respectively. The main parameter investigated was the replacement level of lightweight fine aggregate to the natural sand. Workability and mechanical properties of lightweight AA concrete were measured: the variation of slump with time, the rate of compressive strength development, the splitting tensile strength, the moduli of rupture and elasticity, the stress-strain relationship, the bond resistance and shrinkage strain. Test results showed that the compressive strength of lightweight AA concrete sharply decreased when the replacement level of lightweight fine aggregate exceeded 30%. In particular, the increase in the discontinuous grading of lightweight aggregate resulted in the deterioration of the mechanical properties of concrete tested. The measured properties of lightweight AA concrete were also compared, wherever possible, with the results obtained from the design equations specified in ACI 318-05 or EC 2, depending on the relevance, and the results predicted from the empirical equations proposed by Slate et al. for lightweight ordinary Portland cement concrete. The stress-strain curves of different concrete were compared with predictions obtained from the mathematical model proposed by Tasnimi. The measured mechanical properties of lightweight AA concrete generally showed little agreement with the predictions obtained from these equations.

Enhancement of Impact Resistance of Layered Steel Fiber Reinforced High Strength Concrete Beam (층 구조를 갖는 강섬유 보강 고강도 콘크리트 보의 충격저항성능 향상)

  • Yoo, Doo-Yeol;Min, Kyung-Hwan;Lee, Jin-Young;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.369-379
    • /
    • 2012
  • The collapse of concrete structures by extreme loads such as impact, explosion, and blast from terrorist attacks causes severe property damage and human casualties. Concrete has excellent impact resistance to such extreme loads in comparison with other construction materials. Nevertheless, existing concrete structures designed without consideration of the impact or blast load with high strain rate are endangered by those unexpected extreme loads. In this study, to improve the impact resistance, the static and impact behaviors of concrete beams caste with steel fiber reinforced concrete (SFRC) with 0~1.5% (by volume) of 30 mm long hooked steel fibers were assessed. Test results indicated that the static and impact resistances, flexural strength, ductility, etc., were significantly increased when higher steel fiber volume fraction was applied. In the case of the layered concrete (LC) beams including greater steel fiber volume fraction in the tensile zone, the higher static and impact resistances were achieved than those of the normal steel fiber reinforced concrete beam with an equivalent steel fiber volume fraction. The impact test results were also compared with the analysis results obtained from the single degree of freedom (SDOF) system anaysis considering non-linear material behaviors of steel fiber reinforced concrete. The analysis results from SDOF system showed good agreement with the experimental maximum deflections.