• Title/Summary/Keyword: 변형률 속도

Search Result 496, Processing Time 0.025 seconds

Dynamic Constitutive Equations of Auto-Body Steel Sheets with the Variation of Temperature (I) - Dynamic Material Characteristics with the Variation of Temperature - (차체용 강판의 온도에 따른 동적 구성방정식에 관한 연구 (I) - 온도에 따른 동적 물성 특성 -)

  • Lee, Hee-Jong;Song, Jung-Han;Park, Sung-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.174-181
    • /
    • 2007
  • This paper is concerned with the thermo-mechanical behavior of steel sheet for an auto-body including temperature dependent strain rate sensitivity. In order to identify the temperature-dependent strain rate sensitivity of SPRC35R, SPRC45E and TRIP60, uniaxial tensile tests are performed with the variation of the strain rates from 0.001/sec to 200/sec and the variation of environmental temperatures from $-40^{\circ}C$ to $200^{\circ}C$. The thermo-mechanical response at the quasi-static state is obtained from the static tensile test and that at the intermediate strain rate is obtained from the high speed tensile test. Experimental results show that the variation of the flow stress and fracture elongation becomes sensitive to the temperature as the strain rate increases. It is observed that the dynamic strain aging occurs with TRIP60 at the temperature above $150^{\circ}C$. Results also indicate that the flow stress and tincture elongation of SPRC35R are more dependent on the changes of strain rates and temperature than those of SPRC45E and TRIP60.

Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates (변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성)

  • Song J. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.275-278
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it finds use in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. In order to design optimal structural parts made of INCONEL 718, accurate understanding of material's mechanical properties, dynamic behavior and fracture characteristic as a function of strain rates are required. This paper concerned with the dynamic material properties of the INCONEL 718 for the various strain rates. The dynamic response of the INCONEL 718 at intermediate strain rate is obtained from the high speed tensile test machine test and at the high strain rate is from the split Hopkinson pressure bar test. Based on the experimental results, the effects of strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure are evaluated. Experimental results from both quasi-static and high strain rate up to the 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of INCONEL 718.

  • PDF

Dynamic Change of Stresses in Subsoil under Concrete Slab Track Subjected to Increasing Train Speeds (열차 증속에 따른 콘크리트 궤도 노반의 동적 응력 변화)

  • Lee, Tae-Hee;Choi, Chan-Yong;Nsabimana, Ernest;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.10
    • /
    • pp.57-66
    • /
    • 2013
  • Societal interest on a faster transportation demands an increase of the train speed exceeding current operation speed of 350 km/h. To trace the pattern of variations in displacements and subsoil stresses in the concrete slab track system, finite element simulations were conducted. For a simple track-vehicle modeling, a mass-point system representing the moving train load was developed. Dynamic responses with various train speeds from 100 to 700 km/h were investigated. As train speeds increase the displacement at rail and subsoil increases nonlinearly, whereas significant dynamic amplification at the critical velocity has not been found. At low train speed, the velocity of elastic wave carrying elastic energy is faster than the train speed. At high train speed exceeding 400 km/h, however, the train speed is approximately identical to the elastic wave velocity. Nonlinearity in the stress history in subsoil is amplified with increasing train speeds, which may cause significant plastic strains in path-dependent subsoil materials.

The Effects of Stress and Time History on Pore Pressure Parameter of Overconsoldated clay (과압밀점토의 간극수압계수에 응력이력과 시간이력이 미치는 영향)

  • 김수삼;김병일;한상재;신현영
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.4
    • /
    • pp.286-294
    • /
    • 2002
  • This study investigated the effects of stress and time history of overconsolidated clayey soils on pore pressure parameter, A. Laboratory tests were carried out under the conditions of both varying stress and time history. The stress history is classified into (i) rotation angle of stress path, (ii) overconsolidation ratio, and (iii) magnitude of length of recent stress path. The time history is divided into (i) loading rate of recent stress path and (ii) rest time. Pore pressure parameters are different both in the magnitude and trend with the rotation angle, depending on the magnitude of overconsolidation ratio but not in a trend. In addition, the pore pressure parameters have no effects on the magnitude of length of recent stress path except the level of initially small strain, while loading rates of recent stress path have effects on it. Finally, the pore pressure parameters of overconsolidated clays increase with the existence of the rest time, until either the deviator stress exceeds 70 kPa or the strain up to 0.1%.

Evaluation of Strain, Strain Rate and Temperature Dependent Flow Stress Model for Magnesium Alloy Sheets (마그네슘 합금 판재의 변형률, 변형률 속도 및 온도 환경을 고려한 유동응력 모델에 대한 연구)

  • Song, W.J.;Heo, S.C.;Ku, T.W.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.229-235
    • /
    • 2011
  • The formability of magnesium alloy sheets at room temperature is generally low because of the inherently limited number of slip systems, but higher at temperatures over $150^{\circ}C$. Therefore, prior to the practical application of these materials, the forming limits should be evaluated as a function of the temperature and strain rate. This can be achieved experimentally by performing a series of tests or analytically by deriving the corresponding modeling approaches. However, before the formability analysis can be conducted, a model of flow stress, which includes the effects of strain, strain rate and temperature, should be carefully identified. In this paper, such procedure is carried out for Mg alloy AZ31 and the concept of flow stress surface is proposed. Experimental flow stresses at four temperature levels ($150^{\circ}C$, $200^{\circ}C$, $250^{\circ}C$, $300^{\circ}C$) each with the pre-assigned strain rate levels of $0.01s^{-1}$, $0.1s^{-1}$ and $1.0s^{-1}$ are collected in order to establish the relationships between these variables. The temperature-compensated strain rate parameter which combines, in a single variable, the effects of temperature and strain rate, is introduced to capture these relationships in a compact manner. This study shows that the proposed concept of flow stress surface is practically relevant for the evaluation of temperature and strain dependent formability.

Evaluation of Shrinkage and Creep Behavior of Low-Heat Cement Concrete (저열 시멘트 콘크리트의 건조수축 및 크리프 거동 평가)

  • Mun, Jae-Sung;Yang, Keun-Hyeok;Kim, Si-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.305-311
    • /
    • 2016
  • This study examined the long-term inelastic characteristics, including unrestrained shrinkage and creep, of low-heat cement concrete under different ambient curing temperatures. To achieve the designed compressive strength of 42MPa, water-to-binder ratios were selected to be 27.5, 30, and 32.5% for curing temperatures of 5, 20, and $40^{\circ}C$, respectively. Test results showed that the shrinkage strains of concrete mixtures tended to decrease with the decrease in curing temperature because of the delayed evaporation of internal capillary and gel waters. Meanwhile, creep strains were higher in concrete specimens under lower curing temperature due to the occurrence of the transition temperature creep. The design models of KCI provision gave better accuracy in comparison with test results than those of ACI 209, although a correction factor for low-heat cement needs to be established in the KCI provision.

Experimental and Analytical Study of the Dynamic Behavior of a Polyurethane Spring Restoring Disk Bearing (폴리우레탄 스프링 복원형 디스크 받침의 동적거동에 대한 실험 및 해석적 연구)

  • Park, Hyung-Ghee;Lee, You-In;Jung, Dae-Yu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.61-69
    • /
    • 2011
  • In this paper, the factors affecting the dynamic characteristics of a polyurethane spring restoring disk bearing are analysed to predict the dynamic behavior of the bearing. The prediction results and the test results are compared. The Young's modulus of the polyurethane spring, which varies according to strain of spring and the friction coefficient, of PTFE (PolyTetraFluoroEthylene), which varies according to the velocity and pressure of PTFE, are considered as the factors influencing the dynamic characteristics. W-PTFE virgin products are used and polyurethane springs are produced for the tests. The equation related to changing the friction coefficient and the modulus of elasticity are obtained through an inverse estimation of the test results. The estimation results, considering the factors affecting the dynamic characteristics, simulate the test results more appropriately than the estimation without the consideration of those factors.

Study on Crashworthiness of Icebreaker Steel: Part I Steel Properties (쇄빙선 강재의 내충격 특성에 관한 실험적 연구: 제1부 강재 특성)

  • Noh, Myung-Hyun;Lee, Jae-Yik;Park, Sung-Ju;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.268-276
    • /
    • 2016
  • This paper presents a study on the crashworthiness of the scaled-down stiffened panels used on a Korean icebreaker. In order to validate the crashworthiness of the panels, this paper provides various mechanical properties such as the results of a CVN test, quasi-static tensile test, and high-speed tensile test at arctic temperatures. Two types of steels (EH32 and FH32) were chosen for the material tests. CVN tests revealed that the two steels were equivalent up to −60℃ in terms of their impact energy absorption capacity. However, the toughness of FH32 was significantly superior to that of EH32. EH32 showed slightly higher flow stresses at all temperature levels compared to FH32. The improvement ratios of the yield strengths, tensile strengths, plastic hardening exponents, etc. for FH32, which were obtained from quasi-static tensile tests, showed an apparent ascending tendency with a decrease in temperature. Dynamic tensile test results were obtained for the two temperatures levels of 20℃ and −60℃ with two plastic strain rate levels of 1 s−1 and 100 s−1. A closed form empirical formula proposed by Choung et al. (2011;2013) was shown to be effective at predicting the flow stress increase due to a strain rate increase.

Numerical Modeling of Shear Heating in 2D Elastoplastic Extensional Lithosphere using COMSOL Multiphysics® (콤솔 멀티피직스를 이용한 2차원 탄소성 인장 암석권 모형에서 발생하는 전단열에 관한 수치 모사 연구)

  • Jo, Taehwan;So, Byung-Dal
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • In the development of geodynamic structures such as subduction and rift zones, a weakening mechanism is essential for localized weak zone formation in the lithosphere. Shear heating, a weakening mechanism, generates short-wavelength temperature elevation in the lithosphere; the increased temperature can reduce lithospheric strength and promote its breakup. A two-dimensional elastoplastic extensional basin model was used to conduct benchmarking based on previous numerical simulation studies to quantitatively analyze shear heating. The amount of shear heating was investigated by controlling the yield strength, extensional velocity, and strain- and temperature-dependent weakening. In the absence of the weakening mechanism, the higher yield strength and extensional velocity led to more vigorous shear heating. The reference model with a 100-MPa yield strength and 2-cm/year extension showed a temperature increase of ~ 50 K when the bulk extension was 20 km (i.e., 0.025 strain). However, in the yield-strength weakening mechanism, depending on the plastic strain and temperature, more efficient weakening induced stronger shear heating, which indicates positive feedback between the weakening mechanism and the shear heating. The rate of shear heating rapidly increased at the initial stage of deformation, and the rate decreased by 80% as the lithosphere weakened. This suggests that shear heating with the weakening mechanism can significantly influence the strength of relatively undamaged lithosphere.

A Study of Consolidation Characteristics of Constant Rate of Strain Consolidation tests with Rates of Strain (변형률속도에 따른 일정변형률시험의 압밀특성 비교연구)

  • 장병욱;차경섭;원정윤
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.455-460
    • /
    • 1998
  • This study performed to establish tile characteristics of constant rate of strain consolidation(CRSC) tests. The values obtained by the CRCS tests were compared with oedometer tests. From the comparision of the results of oedometer and CRSC tests for soft soil from Haenam, Korea, it was concluded that. 1. When rate of strain is 0.9mm/hr, compression curve of CRSC test was not coincided with those of tile oedometer test, then preconsolidation stress was larger than those of other rates of strain. 2. Permeabilities from CRSC tests and direct measurements were about same each other, but permeabilities from Oedometer tests were large than those from others.

  • PDF