• Title/Summary/Keyword: 변형률에너지밀도

Search Result 36, Processing Time 0.028 seconds

Fatigue Life Analysis and Prediction of 316L Stainless Steel Under Low Cycle Fatigue Loading (저사이클 피로하중을 받는 316L 스테인리스강의 피로수명 분석 및 예측)

  • Oh, Hyeong;Myung, NohJun;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1027-1035
    • /
    • 2016
  • In this study, a strain-controlled fatigue test of widely-used 316L stainless steel with excellent corrosion resistance and mechanical properties was conducted, in order to assess its fatigue life. Low cycle fatigue behaviors were analyzed at room temperature, as a function of the strain amplitude and strain ratio. The material was hardened during the initial few cycles, and then was softened during the long post period, until failure occurred. The fatigue life decreased with increasing strain amplitude. Masing behavior in the hysteresis loop was shown under the low strain amplitude, whereas the high strain amplitude caused non-Masing behavior and reduced the mean stress. Low cycle fatigue life prediction based on the cyclic plastic energy dissipation theory, considering Masing and non-Masing effects, showed a good correlation with the experimental results.

Investigation of the Strain Rate Effects of EPS Foam (EPS Foam의 변형률속도효과에 대한 연구)

  • Kang, Woo-Jong;Cheon, Seoung-Sik;Lee, In-Hyeok;Choi, Seon-Ung;Min, Je-Hong;Lee, Sang-Hyeok;Bae, Bong-Kook
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.64-68
    • /
    • 2010
  • Expanded polystyrene(EPS) foams are often used in packaging to protect electrical appliances from impact loads. The energy absorbing performances of the EPS foams depend on several parameters such as density, microstructure and strain rate. Thus, the effects of the parameters on the strength of the EPS foams need to be investigated for an optimized packaging design by FEM. In this study, various EPS foams which have different densities were quasi-statically and dynamically loaded in order to obtain the stress-strain curves. EPS foams of various densities from 18.5 to 37.0kg/m3 were considered in the experiments. A drop-mass type apparatus was developed for the intermediate strain rate tests up to several hundreds/second. It was found from the experimental results that the strength of the EPS foams increase about 170% as the strain rate increases from 0.06/s to 60/s. Experimental results also showed that the strain rate sensitivity increases as the strain increases.

Crashworthy behaviour of cellular polymer under constant impact energy (동일 충격 에너지 조건하에서 다공질 고분자의 충격거동에 관한 연구)

  • Jeong, Kwang-Young;Cheon, Seong-Sik
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.27-32
    • /
    • 2009
  • Characterisation of the stress-strain relationship as well as crashworthiness of cellular polymer was investigated under constant impact energy with different velocities, considering inertia and strain rate effects simultaneously during the impact testing. Quasi-static and impact tests were carried out for two different density (64 $kg/m^3$, 89 $kg/m^3$) cellular polymer specimens. Also, the equations, coupled with the Sherwood-Frost model and the Impulse-Momentum theory, were employed to build the constitutive relation of the cellular polymer. The nominal stress-strain curves obtained from the constitutive relation were compared with results from impact tests and showed to be in good agreement.

A Study on the Anti-impulsive Strength of the Helmets for a Gas Industry (가스산업용 안전모의 내충격 안전성에 관한 연구)

  • Kim, Chung Kyun;Kim, Tae Whan
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.52-57
    • /
    • 2013
  • In this study, the strain energy density, stress and deformation behaviors have been analyzed as functions of a thickness and a force area of protective helmets with and without an extruder on the top of the shell structure using the finite element method. The strain energy density in which is related to the absorption capacity of an impact energy transfer is one of a key element of the helmet safety. The FEM analyzed results show that when the impulsive force of 4,540N is applied on the top surface of the helmets, the maximum stress is linearly reduced for an increased area of impact forces. But, the maximum strain energy density has been reduced for the increased force area. The reduced strain energy density may increase the impulsive forces transferred to the head and neck of helmet wearers, which may decrease the impact energy absorption safety of the helmets. In thus, it is safer design of the helmet in which has an extruded structure on the summit surface, but the modified helmet may decrease the impact energy absorption capacity.

The study on the adaptive bone remodeling in tibia of beagle by implant (인공삽입물에 의한 비글견 경골에서의 적응적 골 재구축에 관한 연구)

  • 문희욱;김영은;최귀원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1198-1201
    • /
    • 2004
  • To investigate the bone remodeling phenomenon around screw tooth of the implant for osteointegration, a finite element model of the screw was developed. Strain energy density was chosen for the indicator for remodeling process. The modified mathematical equation for remodeling process was applied to 2-dimensional tibia and implant model under static bending state Caculated results show reliable remodeling process compared with histology data.

  • PDF

Prediction of Low Cycle Fatigue Life for Inconel 617 using Strain Energy Method (변형률 에너지법을 이용한 Inconel 617의 저주기피로 수명 예측)

  • Kim, Duck-Hoi;Kim, Ki-Gwang;Kim, Jae-Hoon;Lee, Young-Shin;Park, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.285-290
    • /
    • 2004
  • Low cycle fatigue tests are performed on the Inconel 617 that be used for a hot gas casing. The relation between strain energy density and numbers of cycles to failure is examined in order to predict the low cycle fatigue life of Inconel 617. The life predicted by the strain energy method is found to coincide with experimental data and results obtained from the Coffin-Manson method. Also the cyclic behavior of Inconel 617 is characterized by cyclic hardening with increasing number of cycle at room temperature.

  • PDF

Comparison and Evaluation of Low-Cycle Fatigue Life Prediction Methods Using Cu-Cr Alloy Developed for Rocket Engines (로켓엔진용 구리크롬 합금의 저주기 피로수명 예측방법 비교 및 평가)

  • Jongchan Park;Jae-Hoon Kim;Keum-Oh Lee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.5
    • /
    • pp.1-10
    • /
    • 2022
  • For Cu-Cr alloy developed for rocket engines, estimated fatigue lives were calculated using various fatigue life prediction methods and compared with fatigue life acquired from low-cycle fatigue tests. The utilized methods for fatigue life prediction are as follows: Coffin-Manson relation, plastic/total strain energy density relations, Smith-Watson-Topper relation, Tomkins relation, and Jahed-Varvani relation. As results of estimation of fatigue lives, it satisfied within scatter band two compared to the test fatigue lives in all methods. The quantitative calculation of the deviation of predicted fatigue lives gives that the total strain energy density relation presents the best result.

Correlation Between Fatigue Life of 2.2Ni-0.1Cr-0.5Mo Steel Accompanying Mean Stresses with Cyclic Strain Energy Density (평균응력을 동반하는 2.2Ni-lCr-0.5Mo강의 피로수명과 변형률에너지 밀도와의 상관관계)

  • Koh, Seung-Kee;Ha, Jeong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.167-174
    • /
    • 2003
  • Fatigue damage of 2.2Ni-1Cr-0.5Mo steel used fir high strength pressure tubes and vessels was evaluated using uniaxial specimens subjected to strain-controlled fatigue loading. Based on the fatigue test results from different strain ratios of -2. -i 0, 0.5, 0.75, the fatigue damage of the steel was represented by using a cyclic strain energy density. Mean stress relaxation depended on the magnitude of the applied strain amplitude. The high pressure vessel steel exhibited the cyclic softening behavior. Total strain energy density consisting of the plastic strain energy density and the elastic tensile strain energy density described fairly well the fatigue life of the steel, taking the mean stress effects into account. Compared to other fatigue damage parameters, fatigue life prediction by the cyclic strain energy density showed a good correlation with the experimental fatigue lift within a factor of 3.

Fatigue life evaluation for fuselage structure using equivalent unit load (등가 단위하중을 이용한 동체 구조물 피로수명 평가)

  • Kim, Sung-Joon;Ahn, Seok-Min;Yeom, Chan-Hong
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.13-18
    • /
    • 2009
  • In this study, an equivalent unit load methodology has been presented to simplify the fatigue analysis procedure. And fuselage structure fatigue life has been evaluated based on equivalent unit load. Finite element analysis has been carried out to analyze the stress intensity factor and geometrical correction factor that is needed for crack growth analysis. And strain energy density factor is used to predict the initial direction of crack propagation.

  • PDF

Analysis of the Bone-remodeling Process Considering Stimuli Delivery Cell Model (자극전달세포 모델을 고려한 골 재형성 해석)

  • Moon Hee-Wook;Kim Young-Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.180-186
    • /
    • 2006
  • To investigate the bone remodeling phenomenon around implant device, 3-D mathematical simulation model was developed. Strain energy density from the finite element method was chosen for the indicator for remodeling process. Recursive calculations continued until converged results between FEM and mathematical model. For a osteo-integration example, bone-remodeling process in a implanted tibia of beagle was adapted. Calculated results indicated that the bone densities around screw pitch were increased which indicates firm fixations between the bone and implant. Screw design parameters have an influence on initial stability of the implant rather than remodeling process.