• Title/Summary/Keyword: 변형량 예측 모델

Search Result 87, Processing Time 0.031 seconds

Development of Rutting Prediction Model of Flexible Pavement using Repetitive Axial Loading Test (반복 축하중 시험을 이용한 연성포장의 소성변형 예측모델 개발)

  • Kim, Nakseok
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.4
    • /
    • pp.491-498
    • /
    • 2017
  • The primary objective of this research is to develop a rutting performance prediction model of flexible pavement. Extensive laboratory testings were conducted to achieve the objective. A new test method employing repetitive axial loading with confinement was also adopted to estimate the rutting performance of asphalt concrete in the research. The rutting prediction model employes a layer-strain theory. The required rutting coefficients for the prediction model were determined through the laboratory rutting characterizations of the asphalt concrete layer materials. Within the limits of this study, a laboratory rutting prediction model of flexible pavement using repetitive axial loading test was presented. It is noted that the developed rutting prediction model simulates propery the behaviors of flexible pavement layer materials.

Development of the Permanent Deformation Prediction Model of 19mm Dense Grade Asphalt Mixtures (19mm 밀입도 아스팔트 혼합물의 소성변형 예측 모델 개발)

  • Park, Hee-Mun;Choi, Ji-Young;Park, Seong-Wan
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.1-8
    • /
    • 2005
  • Permanent Deformation is one of the most important load-related pavement distresses in asphalt pavements. The Korean Pavement Design Guide currently being developed adopted the mechanistic-empirical approach and needed the pavement distress prediction models. This study intends to develop the model for prediction of permanent deformation in the asphalt layer and estimate the pavement performance. The objectives of this paper are to figure out the factors affecting the permanent deformation and then develop the permanent deformation prediction model for asphalt mixtures. The repeated triaxial load test was Performed on the 19mm dense graded asphalt mixture with variation of temperature and air void. Results from the laboratory tests showed that temperature and air void in asphalt mixtures have significantly influenced on the factors in prediction model. The permanent deformation prediction model for 19m dense grade asphalt mixtures has been developed using the multiple regression approach and validated the proposed permanent deformation prediction model.

  • PDF

Development of Pavement Distress Prediction Models Using DataPave Program (DataPave 프로그램을 이용한 포장파손예측모델개발)

  • Jin, Myung-Sub;Yoon, Seok-Joon
    • International Journal of Highway Engineering
    • /
    • v.4 no.2 s.12
    • /
    • pp.9-18
    • /
    • 2002
  • The main distresses that influence pavement performance are rutting, fatigue cracking, and longitudinal roughness. Thus, it is important to analyze the factors that affect these three distresses, and to develop prediction models. In this paper, three distress prediction models were developed using DataPave program which stores data from a wide variety of pavement sections In the United States. Also, sensitivity studies were conducted to evaluate how the input variables impact on the distresses. The result of sensitivity study for the prediction model of rutting showed that asphalt content, air void, and optimum moisture content of subgrade were the major factors that affect rutting. The output of sensitivity study for the prediction model of fatigue cracking revealed that asphalt consistency, asphalt content, and air void were the most influential variables. The prediction model of longitudinal roughness indicated asphalt consistency, #200 passing percent of subgrade aggregate, and asphalt content were the factors that affect longitudinal roughness.

  • PDF

Development of Deformation Predicting Model for Line Heating of Steel Plates (강판의 선상가열시 변형량 예측모델의 개발)

  • Lim, Dong-Yong;Lee, Joo-Sung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.121-126
    • /
    • 2003
  • This paper is concerns with the development of the formulae to predict deformation of curved plate due to line heating. For this purpose thermal elasto-plastic analysis has been carried out for both flat and curved plate models with varying parameters which affect the result of line heating. based on the results of numerical analysis, the formulae for predicting angular deformation has been derived through the regression analysis, which. It has been seen that the present model well agrees with the numerical analysis results and can reflect the curvature effect of plate to be heated. This paper ends with some comments on this formulae.

  • PDF

Development of Deformation Predicting Model for Line Heating of Steel Plates (강판의 선상가열시 변형량 예측 모델의 개발)

  • Lim Dong-yong;Lee Joo-sung
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.177-184
    • /
    • 2005
  • This paper is concerns with the development of the formulae to predict deformation of curved plate due to line heating. For this purpose thermal elasto-plastic analysis has been carried out for both flat and curved plate models with varying parameters which affect the result of line heating. based on the results of numerical analysis, the formulae for predicting angular deformation has been derived through the regression analysis, which. It has been seen that the present model well agrees with the numerical analysis results and can reflect the curvature effect of plate to be heated. This paper ends with some comments on this formulae.

  • PDF

A numerical study on squeezing of overstressed rock around deep tunnels (심부 터널 주변 과응력 암반의 압출 거동에 관한 수치해석적 연구)

  • Lee, Kun-Chai;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.6
    • /
    • pp.557-568
    • /
    • 2016
  • Squeezing is a phenomenon that may occur in deep tunneling and could bring about a large plastic deformation, tunnel closure and collapse of tunnel supports. Therefore, quantitative estimations of deformation and stress from squeezing and its possibility are necessary for establishment of a rational tunneling method. This study carried out three dimensional numerical analyses using a strain softening model in order to simulate the behaviour of squeezing and to estimate deformation and yield area around tunnels quantitatively. Numerical analyses were performed for 42 cases of various stress and strength conditions. As a result, the maximum tangential stress and strength of rock mass ratio could estimate plastic deformation and yield depth around tunnels and equations of relations between them were proposed.

A Constitutive Model for Rotation of Principal Stress Axes during Direct Simple Shear Deformation (직접단순전단변형에 따른 주응력 방향의 회전을 고려한 구성모델)

  • Park, Sung-Sik;Lee, Jong-Cheon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.53-62
    • /
    • 2008
  • A constitutive model, which can simulate the effect of principal stress rotation associated with direct simple shear test, is proposed in this study. The model is based on two mobilized planes. The plastic strains occur from the two mobilized planes, and depend on stress state, and they are added. The first plane is a plane of maximum shear stress, which rotates about the horizontal axis, and the second plane is a horizontal plane which is spatially fixed. The second plane is used to consider the effect of principal stress rotation on simple shear tests under different stress states. The soil skeleton behavior observed in drained simple shear tests is captured in the model. This constitutive model is incorporated into the dynamic coupled stress-flow finite difference program FLAC. The model is first calibrated with drained simple shear tests on loose Fraser River sand. The measured shear stress and volume change are partially induced by principal stress rotation and compared with model calculations. The model is verified by comparing predicted and measured settlements due to rigid footing resting on loose sands. Settlements predicted by the proposed model were very similar to measured settlements. Mohr-Coulomb model can not consider the effect of principal stress rotation and its prediction was only 20% of measured settlements.

Prediction of Stress-Strain Relation and Evolution of Compliance of Concrete by a Micromechanical Model (미세역학이론에 의한 콘크리트의 응력-변형도 관계와 연성도의 예측에 관한 연구)

  • 김진구
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.3
    • /
    • pp.147-155
    • /
    • 1996
  • In this study a model for the constitutive relation of a plane concrete is proposed using a micromechariical model. In this model a precursor crack is assumed to exist in the aggregate-cement paste interface, and the LEFM is used to predict the nucleation of the bond cracks and the grow th of mortar cracks. For computational convenience the bond crack-mortar crack configuration is transformed into a straight crack with a point force in the middle. 'The overall compliance and the cons,titutive relation are predicted from the damage due to microcracks, and the predicted stress-strain curves are compared with some experimental data. According to the results, the model predictions are better for under tensile loading than under compression, for high, strength concrete than for normal strength concrete.

Deformation Analysis of a Shallow NATM Tunnel using Strain Softening Model and Field Measurement (변형률 연화모델과 현장계측을 이용한 저토피 NATM터널의 변형해석)

  • Lee, Jaeho;Kim, Youngsu;Moon, Hongduk;Kim, Daeman;Jin, Guangri
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.29-36
    • /
    • 2007
  • The control and prediction of surface settlement, gradient and ground displacement are the main factors in urban tunnel construction. This paper carried out the estimation and prediction of ground behavior around tunnel due to excavation using computational method and case study in detail for the analysis of deformation behavior in urban NATM tunnel. Computational method was performed by FLAC-2D with strain softening model and elastic plastic model. Field measurements of surface subsidence and ground displacement were adopted to monitor the ground behavior resulting from the tunneling and these values were applied to modify tunnel design parameters on construction.

  • PDF

동적반복하중을 받는 R/C 부재의 해석모델에 관한 최근 연구 동향

  • 심종성
    • Computational Structural Engineering
    • /
    • v.3 no.3
    • /
    • pp.20-24
    • /
    • 1990
  • 현재까지의 철근콘크리트(R/C)부재의 이력거동을 예측하기 위한 이론적 연구는 대부분이 휨 변위량이 전체 변위량을 지배한다는 가정하에 휨 해석을 행하고 있다. 그러나 지진과 같은 탄성한계를 벗어난 강한 동적반복하중을 받는 경우 철근 콘크리트 부재의 변위량은 휨 변위량 뿐만 아니라 전단 변위량 및 부재연결부에서의 회전 변위량에 의해 지배됨이 많은 연구를 통해 밝혀졌다. 전단이력거동은 강성과 강도저하가 심하게 나타나고 낮은 에너지 발산능력을 갖는 특징에 의해 휨 이력거동과는 구별되며 반복하중이 계속되면 강성이 저하되는 경향때문에 전단변형이 R/C부재의 거동을 지배하게 된다. 이러한 부재거동의 특징에 견주어 볼 때 현재 사용되고 있는 해석모델을 이용하여 동적응답을 예측하고, 해석하여 설계된 기존의 R/C부재는 강한 동적하중을 받을 경우 해석적으로는 전혀 예측치 못하게 되는 결과를 초래하게 된다.

  • PDF