• Title/Summary/Keyword: 변형된 영상 생성 모델

Search Result 48, Processing Time 0.025 seconds

Data Augmentation Method for Deep Learning based Medical Image Segmentation Model (딥러닝 기반의 대퇴골 영역 분할을 위한 훈련 데이터 증강 연구)

  • Choi, Gyujin;Shin, Jooyeon;Kyung, Joohyun;Kyung, Minho;Lee, Yunjin
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.123-131
    • /
    • 2019
  • In this study, we modified CT images of femoral head in consideration of anatomically meaningful structure, proposing the method to augment the training data of convolution Neural network for segmentation of femur mesh model. First, the femur mesh model is obtained from the CT image. Then divide the mesh model into meaningful parts by using cluster analysis on geometric characteristic of mesh surface. Finally, transform the segments by using an appropriate mesh deformation algorithm, then create new CT images by warping CT images accordingly. Deep learning models using the data enhancement methods of this study show better image division performance compared to data augmentation methods which have been commonly used, such as geometric conversion or color conversion.

Development of the 3D Rail Profile Reconstruction Method Improving the Measurement Accuracy of Railway Abrasion (레일 마모도의 측정 정밀도 향상을 위한 3차원 레일 프로파일 재구성 기법 개발)

  • Ahn, Sung-Hyuk;Kim, Man-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.533-539
    • /
    • 2010
  • The The contactless railway abrasion measurement system have to satisfy two conditions to increase the measurement accuracy as follows. The laser region projected on the rail have to be extracted without the geometrical distortion. The mapping of the acquired laser region data on the rail profile have to be matched with the cross section of rail, exactly. But, the conventional railway abrasion measurement system is required the post image processing with a camera model and a perspective transform for the exact mapping between the cross section of rail and the coordinate data extracted from a line laser region or the raw image obtained from a camera because the image captured from the camera has an oblique viewpoint. So, the measured rail profile data had limits to the measurement accuracy because of a discontinuity point. In this Paper, we propose the 3D rail profile reconstruction method to increase the accuracy of the railway abrasion measurement system applying the modified camera model and perspective transform to the image obtained from the bidirectional rail.

  • PDF

Fast 3D Model Extraction Algorithm with an Enhanced PBIL of Preserving Depth Consistency (깊이 일관성을 보존하는 향상된 개체군기반 증가 학습을 이용한 고속 3차원 모델 추출 기법)

  • 이행석;장명호;한규필
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.1_2
    • /
    • pp.59-66
    • /
    • 2004
  • In this paper, a fast 3D model extraction algorithm with an enhanced PBIL of preserving depth consistency is proposed for the extraction of 3D depth information from 2D images. Evolutionary computation algorithms are efficient search methods based on natural selection and population genetics. 2D disparity maps acquired by conventional matching algorithms do not match well with the original image profile in disparity edge regions because of the loss of fine and precise information in the regions. Therefore, in order to decrease the imprecision of disparity values and increase the quality of matching, a compact genetic algorithm is adapted for matching environments, and the adaptive window, which is controlled by the complexity of neighbor disparities in an abrupt disparity point is used. As the result, the proposed algorithm showed more correct and precise disparities were obtained than those by conventional matching methods with relaxation scheme.

Real-Time 3D Volume Deformation and Visualization by Integrating NeRF, PBD, and Parallel Resampling (NeRF, PBD 및 병렬 리샘플링을 결합한 실시간 3D 볼륨 변형체 시각화)

  • Sangmin Kwon;Sojin Jeon;Juni Park;Dasol Kim;Heewon Kye
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.189-198
    • /
    • 2024
  • Research combining deep learning-based models and physical simulations is making important advances in the medical field. This extracts the necessary information from medical image data and enables fast and accurate prediction of deformation of the skeleton and soft tissue based on physical laws. This study proposes a system that integrates Neural Radiance Fields (NeRF), Position-Based Dynamics (PBD), and Parallel Resampling to generate 3D volume data, and deform and visualize them in real-time. NeRF uses 2D images and camera coordinates to produce high-resolution 3D volume data, while PBD enables real-time deformation and interaction through physics-based simulation. Parallel Resampling improves rendering efficiency by dividing the volume into tetrahedral meshes and utilizing GPU parallel processing. This system renders the deformed volume data using ray casting, leveraging GPU parallel processing for fast real-time visualization. Experimental results show that this system can generate and deform 3D data without expensive equipment, demonstrating potential applications in engineering, education, and medicine.

Facial Expression Transformation and Drawing Rule Generation for the Drawing Robot (초상화로봇을 위한 표정 변환 및 드로잉규칙 생성)

  • 김문상;민선규;최창석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2349-2357
    • /
    • 1994
  • This paper presents a facial expression transformation algorithm and drawing rule generation algolithm for a portrait drawing robot which was developed for the '93 Taejeon EXPO. The developed algorithm was mainly focused on the robust automatic generation of robot programs with the consideration that the drawing robot should work without any limitation of the age, sex or race for the persons. In order to give more demonstratin effects, the facial expression change of the pictured person was performed.

Dental Surgery Simulation Using Haptic Feedback Device (햅틱 피드백 장치를 이용한 치과 수술 시뮬레이션)

  • Yoon Sang Yeun;Sung Su Kyung;Shin Byeong Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.6
    • /
    • pp.275-284
    • /
    • 2023
  • Virtual reality simulations are used for education and training in various fields, and are especially widely used in the medical field recently. The education/training simulator consists of tactile/force feedback generation and image/sound output hardware that provides a sense similar to a doctor's treatment of a real patient using real surgical tools, and software that produces realistic images and tactile feedback. Existing simulators are complicated and expensive because they have to use various types of hardware to simulate various surgical instruments used during surgery. In this paper, we propose a dental surgical simulation system using a force feedback device and a morphable haptic controller. Haptic hardware determines whether the surgical tool collides with the surgical site and provides a sense of resistance and vibration. In particular, haptic controllers that can be deformed, such as length changes and bending, can express various senses felt depending on the shape of various surgical tools. When the user manipulates the haptic feedback device, events such as movement of the haptic feedback device or button clicks are delivered to the simulation system, resulting in interaction between dental surgical tools and oral internal models, and thus haptic feedback is delivered to the haptic feedback device. Using these basic techniques, we provide a realistic training experience of impacted wisdom tooth extraction surgery, a representative dental surgery technique, in a virtual environment represented by sophisticated three-dimensional models.

Fashion-show Animation Generation using a Single Image to 3D Human Reconstruction Technique (이미지에서 3차원 인물복원 기법을 사용한 패션쇼 애니메이션 생성기법)

  • Ahn, Heejune;Minar, Matiur Rahman
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.5
    • /
    • pp.17-25
    • /
    • 2019
  • In this paper, we introduce the technology to convert a single human image into a fashion show animation video clip. The technology can help the customers confirm the dynamic fitting result when combined with the virtual try on technique as well as the interesting experience to a normal person of being a fashion model. We developed an extended technique of full human 2D to 3D inverse modeling based on SMPLify human body inverse modeling technique, and a rigged model animation method. The 3D shape deformation of the full human from the body model was performed by 2 part deformation in the image domain and reconstruction using the estimated depth information. The quality of resultant animation videos are made to be publically available for evaluation. We consider it is a promising approach for commercial application when supplemented with the post - processing technology such as image segmentation technique, mapping technique and restoration technique of obscured area.

A 3D Face Reconstruction Method Robust to Errors of Automatic Facial Feature Point Extraction (얼굴 특징점 자동 추출 오류에 강인한 3차원 얼굴 복원 방법)

  • Lee, Youn-Joo;Lee, Sung-Joo;Park, Kang-Ryoung;Kim, Jai-Hie
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.122-131
    • /
    • 2011
  • A widely used single image-based 3D face reconstruction method, 3D morphable shape model, reconstructs an accurate 3D facial shape when 2D facial feature points are correctly extracted from an input face image. However, in the case that a user's cooperation is not available such as a real-time 3D face reconstruction system, this method can be vulnerable to the errors of automatic facial feature point extraction. In order to solve this problem, we automatically classify extracted facial feature points into two groups, erroneous and correct ones, and then reconstruct a 3D facial shape by using only the correctly extracted facial feature points. The experimental results showed that the 3D reconstruction performance of the proposed method was remarkably improved compared to that of the previous method which does not consider the errors of automatic facial feature point extraction.

Finite Element Analysis of Stress Distribution in using Face Mask according to Traction Point (훼이스 마스크의 견인위치에 따른 응력분포에 관한 유한요소법적 연구)

  • Oh, Kyo-chang;Cha, Kyung-Suk;Chung, Dong-hwa
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.2
    • /
    • pp.171-181
    • /
    • 2009
  • The objective of this study was to analyse stress distribution of maxillary complex by use of face mask. The construction of the three-dimensional FEM model was based on the computed tomography(CT) scans of 13.5 years-old male subject. The CT image were digitized and converted to the finite element model by using the mimics program, with PATRAN. An anteriorly directed force of 500g was applied at the first premolar 45 degrees downwards to the FH plane and at the first molar 20 degrees downwards to the FH plane. When 45 degrees force was applied at maxillary first premolar, there were observed expansion at molar part and constriction at premolar part. The largest displacement was 0.00011mm in the x-axis. In the y-axis, anterior displacement observed generally 0.00030mm at maximum. In the z-axis, maxillary complex was displaced 0.00036 mm forward and downward. When 20 degrees force was applied at maxilla first molar, there were observed expansion at lateral nasal wall and constriction at molar part. The largest displacement was 0.001mm in the X-axis. In the Y-axis, anterior displacement observed generally 0.004mm at maximum. In the Z-axis, ANS was displaced upward and pterygoid complex was displaced downward. The largest displacement was 0.002mm.

A study on the biomechanical modeling of human pharynx by using FEM(Finite Element Method) (유한요소기법에 의한 인두의 생체역학모델에 관한 연구)

  • Kim, Seong-Min;Kim, Nam-Hyeon
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.423-429
    • /
    • 1998
  • Human pharynx is unique, acting as a complex interchange between the oral cavity and esophagus, and between the nasal cavity and lungs. It is actively involved in the transport of food and liquid, producing the forces that guide that bolus into the upper esophagus and away from the adjacent larynx and lungs. This study intended to develop a biomechanical model of the human pharynx, utilizing Finite Element Method(FEM). Within each model changes in cross sectional intralumenal area were calculated and compared with the area from the computer-generated FE model. Area matching allowed estimation of intraluminal pressure gradients during swallow. The estimated pharyngeal pressure gradient varies from one region to another. The estimated pharyngeal pressure gradients showed different patterns for upper four levels and lower four levels. The contraction velocity for upper four levels is much higher than lower four levels. The higher contraction velocities and pressure gradients in the upper levels are consistent with the bolus velocities required for efficient swallow.

  • PDF