• Title/Summary/Keyword: 변형도경화계수

Search Result 4, Processing Time 0.016 seconds

The Behavior of Overall Strain Range in Undrained Triaxial Compression Tests for a Weathered Soil (풍화토의 비배수 삼축압축시험시 전체 변형률 영역의 거동에 관한 연구)

  • 안영대;오세붕;고동희;김동수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.29-39
    • /
    • 2002
  • In order to evaluate the behavior of overall range from small strain to failure, the triaxial compression tests with LVDTs were performed for local displacement measurements. According to the result it was possible to evaluate the total range behavior from 0.001% to 10% and both secant moduli of undisturbed and disturbed weathered soils had a similar result in the small slain level. The normalized shear moduli$(G/G_{max})$ in the undrained triaxial compression tests were similar to those of resonant column tests but the maximum shear moduli$(G/G_{max})$ were strongly affected by the ratio of saturation. As a result of parametric study a constitutive model with anisotropic hardening could predict the behavior of total strain range.

Implicit Stress Integration of the Generalized Isotropic Hardening Constitutive Model : 1. Formulation (일반 등방경화 구성관계에 대한 내재적인 음력적분 : 1. 정식화)

  • 오세붕;이승래
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.145-156
    • /
    • 1996
  • An implicit stress integration algorithm was formulated for implementing an aiusotorpic hardening constitutive model which has been based op the generalized isotropic hardening rule in nonlinear finite element analysis technique. the rate form of stress tensor was implicitly integrated using the generalized trapezoidal rule and the tangent stress-strain modulus was evaluated consistently with the nonlinear solution technique. As a result, it has been found that the nonlinear analysis with the anisotropic hardening constitutive model might be performed accurately and efficiently.

  • PDF

Capacity Design of Eccentrically Braced Frames through Prediction of Link Overstrength (링크의 초과강도 예측에 의한 편심가새골조의 역량설계)

  • Hong, Yunsu;Yu, Eunjong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.271-278
    • /
    • 2021
  • According to the capacity design of eccentrically braced frames (EBFs), non-dissipative members such as columns, link-exterior beams, and braces must remain within the elastic region when a fully-yielded and strain-hardened link transmits force to them. The current AISC 341 standard suggests a strain-hardening factor (SHF) of 1.25 for a link under capacity design, regardless of its properties. However, all the links in an EBF are not likely to yield simultaneously to the extent to which the overstrength corresponding to 1.25 times their expected strength is attained, especially for high-rise buildings. Considering this phenomenon, a technique to predict the SHF of links at the limit state of the structure is proposed in this paper. The exact prediction of the links' SHF could save structural quantities dramatically while achieving the principle of capacity design. To validate the effectiveness of this technique, SHF values predicted by conducting linear analysis were compared with those evaluated by nonlinear analysis. Furthermore, the maximum demand-to-capacity ratios of the non-dissipative members were calculated to verify whether they would remain elastic at the limit state of the structure. Consequently, EBFs designed by the proposed method showed substantially economical quantities through the exact prediction of the SHFs, and the intention of capacity design was successfully achieved.

Study on the Clamping Force and the Friction Coefficient in a Bolt tightened up to the Plastic Range (소성역체결 볼트의 체결력과 마찰계수에 관한 연구)

  • 손승요;신근하
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.133-141
    • /
    • 1994
  • When a bolt is tightened up to the range of plastic deformation, yielding may be governed by the combined stresses due to the axial force developed in the bolt and the frictional torque induced on the thread by the contact with the nut. Consideration is taken account of the fact that the unengaged portion of the thread has least sectional area, being subject to initial yielding. Once yielding has taken place some strain hardening effect may result. Incremental stress-strain relations are used to treat the continued yielding, which is equivalent to treat continued yielding as if summing up the effects of thin walled cylinders subject to plastic deformation. M10 bolts of fine threads are used for both computational and experimental purposes. Variation of axial forces and frictional torques vs. the frictional coefficients are presented together with other plots showing some characterist of bolt under plastic deformation. Finally, a design and control aid for the tightening(i.e., kind of nomograph) is presented, showing the relationships among the torque factor and frictional coefficients for that particular bolt used in the experiment.

  • PDF