• Title/Summary/Keyword: 변조전달함수(MTF)

Search Result 81, Processing Time 0.022 seconds

Study on the Resolution Characteristics by Using Magnetic Resonance Imaging 3.0T (3.0T 자기공명영상을 이용한 해상력 특성에 대한 연구)

  • Min, Jung-Whan;Jeong, Hoi-Woun;Han, Ji-Hyun;Lee, Si-Nae;Han, Song-Yi;Kim, Ki-Won;Kim, Hyun-Soo;Son, Jin-Hyun
    • Journal of radiological science and technology
    • /
    • v.43 no.4
    • /
    • pp.251-257
    • /
    • 2020
  • This study was purpose to quantitative evaluation of edge method of modulation transfer function(MTF) and physical image characteristics of by obtain the optimal edge image by using magnetic resonance imaging(MRI). The MRI equipment was used (MAGNETOM Vida 3.0T MRI, Siemense healthcare system, Germany) and the head/neck matrix shim MR coil were 20 channels(elements) receive coil. The MTF results of showed the best value of 0.294 based on the T2 Nyquist frequency of 1.0 mm-1. The MTF results of showed that the T1 image is 0.160, the T1 CE image is 0.250, T1 Conca2 image is 0.043, and the T1 CE (Concatenation) Conca2 image is 0.190. The T2 image highest quantitatively value for MTF. The physical image characteristics of this study were to that can be used efficiently of the MRI and to present the quantitative evaluation method and physical image characteristics of 3.0T MRI.

Comparison of Modulation Transfer Function in Measurements by Using Edge Device angle in Indirect Digital Radiography (간접평판형 검출기에서 변조전달함수 측정 시 Edge 각도에 따른 비교 연구)

  • Min, Jung-Whan;Jeong, Hoi-Woun
    • Journal of radiological science and technology
    • /
    • v.42 no.4
    • /
    • pp.259-263
    • /
    • 2019
  • This study was purpose to compare image quality of Indirect digital radiography (IDR) system by using the International electro-technical commission standard(IEC 62220-1) which were applied to IEC in medical imaging. To evaluation the analysis of Modulation transfer function(MTF) measurements edge device each angle by using edge method. In this study, Aero (Konica, Japan) which is Indirect flat panel detector(FPD) was used, the size of image receptor matrix $1994{\times}2430$ which performed 12bit processing and pixel pitch is $175{\mu}m$. In IEC standard method were applied to each angle were compared. The results of shown as LSF at $2.0^{\circ}$ and $3.0^{\circ}$ angeles. Shape is constant and shows smooth shape. The amount of data seemed reasonable and 2.19 cycles/mm and 2.01 cycles/mm at a spatial frequency of $2.0^{\circ}$ and $3.0^{\circ}$ at an MTF value of 0.1. At an MTF value of 0.5, the spatial frequencies were $2.0^{\circ}$ and 1.11 cycles/mm and 0.93 cycles/mm at an angle of $3.0^{\circ}$. This study were to evaluate MTF by setting the each $2{\sim}3^{\circ}$ each angle and to suggest the quantitative methods of measuring by using IEC.

Measurement of Image Quality According to the Time of Computed Radiography System (시간에 따르는 CR장비의 영상의 질평가)

  • Son, Soon-Yong;Choi, Kwan-Woo;Kim, Jung-Min;Jeong, Hoi-Woun;Kwon, Kyung-Tae;Hwang, Sun-Kwang;Lee, Ik-Pyo;Kim, Ki-Won;Jung, Jae-Yong;Lee, Young-Ah;Son, Jin-Hyun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.365-374
    • /
    • 2015
  • The regular quality assurance (RQA) of X-ray images is essential for maintaining a high accuracy of diagnosis. This study was to evaluate the modulation transfer function (MTF), the noise power spectrum (NPS), and the detective quantum efficiency (DQE) of a computed radiography (CR) system for various periods of use from 2006 to 2015. We measured the pre-sampling MTF using the edge method and RQA 5 based on commission standard international electro-technical commission (IEC). The spatial frequencies corresponding to the 50% MTF for the CR systems in 2006, 2009, 2012 and 2015 were 1.54, 1.14, 1.12, and $1.38mm^{-1}$, respectively and the10% MTF for 2006, 2009, 2012, and 2015 were 2.68, 2.44, 2.44, and $2.46mm^{-1}$, respectively. In the NPS results, the CR systems showed the best noise distribution in 2006, and with the quality of distributions in the order of 2015, 2009, and 2012. At peak DQE and DQE at $1mm^{-1}$, the CR systems showed the best efficiency in 2006, and showed better efficiency in order of 2015, 2009, and 2012. Because the eraser lamp in the CR systems was replaced, the image quality in 2015 was superior to those in 2009 and 2012. This study can be incorporated into used in clinical QA requiring performance and evaluation of the performance of the CR systems.

Evaluation of Image Quality by Using a Tungsten Edge Block in a Megavoltage (MV) X-ray Imaging (텅스텐 엣지 블록을 이용하여 Megavoltage (MV) 영상의 질 평가)

  • Min, Jung-Whan;Son, Jin-Hyun;Kim, Ki-Won;Lee, Jung-Woo;Son, Soon-Yong;Back, Geum-Mun;Kim, Jung-Min;Kim, Yeon-Rae;Jung, Jae-Yong;Kim, Sang-Young;Lee, Do-Wan;Choe, Bo-Young
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.154-161
    • /
    • 2012
  • Digital Radiography (DR) has rapidly developed in megavoltage X-ray imaging (MVI). Thus, a very simple and general quality assurance (QA) method is required. The purpose of this study was to evaluate the modulation transfer function (MTF), the noise power spectrum (NPS) and the detective quantum efficiency (DQE) for MVI using general QA method and computed radiography (CR) device. We used tungsten edge block with $19{\times}10{\times}1cm^3$ thickness and 6MV energy. For detector, CR-IP (image plate), CR-IP-lead, the CR-IP-back (lanex TM fast back screen), CR-IP-front (lanex TM fast front screen) were used and pre-sampling MTF was calculated. The MTF of CR-IP-front showed the highest value with 1.10 lp/mm although the CR-IP showed the only 0.70 lp/mm. The best NPS was observed in CR-IP front screen. According to the increase in spatial frequency, our results showed that DQE was approximately 1.0 cycles/mm. The present study demonstrates that the QA method with our home-made edge block can be used to evaluate MTF, NPS and DQE for MVI.

A Serial-Parallel Scanner Optics for Thermal Imaging System (열상장비용 직병렬주사광학계)

  • 김창우;김현숙;홍석민;김재기
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.212-216
    • /
    • 1994
  • We have designed and constructed a scanner optics for thermal imaging system operating in 8 - 12 /lfll band. The scanner consists of rotating polygon and oscillating mirror for serial-parallel scan using 5 elements SPRITE HgCdTe. A spherical mirror is used for scan relay mirror to minimize size of the scan mirrors and pupil aberration. The scanner has $40^{\circ}\times26.67^{\circ}$ wide scan field of view and the calculated diffraction MTF shows diffraction limited performance. As a result we have obtained high resolution thermal image. image.

  • PDF

Image Restoration Simulation of Digital X-ray Images Based upon Filtering Techniques and the Quality Evaluation of the Restored Images (다양한 필터링 기법을 이용한 디지털 X-선 영상복원 시뮬레이션 및 정량적 화질평가)

  • Lee, So-Young;Choi, Sung-Il;Oh, Ji-Eun;Cho, Hee-Moon;Lee, Sung-Ju;Park, Yeon-Ok;Cho, Hyo-Sung
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.4
    • /
    • pp.33-40
    • /
    • 2008
  • Images acquired by a digital X-ray imaging system are inherently degraded due to system degradation process and additive noise sources. The system degradation in image quality is typically described as the system response function characterized by the modulation transfer function (MTF) and the noise term described as the noise power spectrum (NPS). In this case, we can restore the blur image as close as possible to the original image by using modified filtering designed for digital imaging system, as we know more precisely about the MTF and the NPS. In this paper, by performing simulation, we tried to restore blurred images taken from a digital X-ray imaging system based upon conventional filtering techniques such as a direct-inverse filtering, limited-inverse filtering, or a Wiener filtering, and evaluated the characteristics of the image restoration.

  • PDF

Comparison Study of the Modulation Transfer Function of a Prototype a-Se based Flat Panel Detector with Conventional Speed Class 400 Film/screen System (비정질 셀레늄을 이용한 직접방식의 디지털 방사선 검출기와 X-ray film과의 MTF측정을 통한 영상 질(quality) 비교평가에 관한 연구)

  • Park, Jang-Yong;Park, Ji-Koon;Kang, Sang-Sik;Moon, Chi-Woong;Lee, Hyung-Won;Nam, Sang-Hee
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.3
    • /
    • pp.163-171
    • /
    • 2003
  • To evaluate the performance of the digital radiography(DR) system developed in our group, the modulation transfer function(MTF) was measured and compared with that of an analog X- ray detector, film/screen system. The DR system has an amorphous selenium(a-Se) layer vacuum-evaporated on a TFT flat panel detector. The speed class 400 film/screen (Fuji) system has been being used in the clinical field as analog X-ray detectors. Both the square wave and slit method were used to evaluate their MTF. The square method was applied to both film/screen and the DR system. The slit method, however, was applied to only DR system. The full-width half maximum resolution of film/screen was 357${\mu}{\textrm}{m}$(1.4 lp/mm at 50% spatial frequency), and the resolution of DR was limited to 200${\mu}{\textrm}{m}$(2.5 lp/mm at 30%). These results indicate the measured resolution limitations approximate to the pixel pitch, 139 ${\mu}{\textrm}{m}$ of TFT. The MTF of DR is higher than that of film/screen by the factor of 1.785. It is proved that our a-Se based DR system has potential usefulness in the clinical field.

Image Quality Evaluation of Medical Image Enhancement Parameters in the Digital Radiography System (디지털 방사선시스템에서 영상증강 파라미터의 영상특성 평가)

  • Kim, Chang-Soo;Kang, Se-Sik;Ko, Seong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.329-335
    • /
    • 2010
  • Digital imaging detectors can use a variety of detection materials to convert X-ray radiation either to light or directly to electron charge. Many detectors such as amorphous silicon flat panels, CCDs, and CMOS photodiode arrays incorporate a scintillator screen to convert x-ray to light. The digital radiography systems based on semiconductor detectors, commonly referred to as flat panel detectors, are gaining popularity in the clinical & hospital. The X-ray detectors are described between a-Silicon based indirect type and a-Selenium based direct type. The DRS of detectors is used to convert the x-ray to electron hole pairs. Image processing is described by specific image features: Latitude compression, Contrast enhancement, Edge enhancement, Look up table, Noise suppression. The image features are tuned independently. The final enhancement result is a combination of all image features. The parameters are altered by using specific image features in the different several hospitals. The image in a radiological report consists of two image evaluation processes: Clinical image parameters and MTF is a descriptor of the spatial resolution of a digital imaging system. We used the edge test phantom and exposure procedure described in the IEC 61267 to obtain an edge spread function from which the MTF is calculated. We can compare image in the processing parameters to change between original and processed image data. The angle of the edge with respect to the axes of detector was varied in order to determine the MTF as a function of direction. Each MTF is integrated within the spatial resolution interval of 1.35-11.70 cycles/mm at the 50% MTF point. Each image enhancement parameters consists of edge, frequency, contrast, LUT, noise, sensitometry curve, threshold level, windows. The digital device is also shown to have good uniformity of MTF and image parameters across its modality. The measurements reported here represent a comprehensive evaluation of digital radiography system designed for use in the DRS. The results indicate that the parameter enables very good image quality in the digital radiography. Of course, the quality of image from a parameter is determined by other digital devices in addition to the proper clinical image.

Evaluation of the Resolution Characteristics by Using American College of Radiology Phantom for Magnetic Resonance Imaging (자기공명영상에서 ACR 팬텀을 이용한 해상력 특성 평가)

  • Min, Jung-Whan;Jeong, Hoi-Woun;Han, Ji-Hyun;Lee, Si-Nae;Kim, Min-Ji;Kim, Seung-Chul
    • Journal of radiological science and technology
    • /
    • v.45 no.1
    • /
    • pp.11-17
    • /
    • 2022
  • This study was purpose to quantitative assessment of the resolution characteristics by using American college of radiology(ACR) phantom for magnetic resonance imaging (MRI). The MRI equipment was used (Achiva 3.0T MRI, Philips system, Netherlands) and the head/neck matrix shim SENSE head coil were 32 channels(elements) receive MR coil. And the MRI equipment was used (Discovery MR 750, 3.0T MRI, GE medical system, America) and the head/neck matrix shim MC 3003G-32R 32-CH head coil were receive MR coil. As for the modulation transfer function(MTF) comparison result by using ACR magnetic resonance imaging phantom, the MTF value of the ACR standard T2 image in GE equipment is 0.199 when the frequency is 1.0 mm-1 and the MTF value of the hospital T2 image in Philips equipment is 0.528. It was used efficiently by using a general sequence more than the standard sequence method using the ACR phantom. In addition it is significant that the quantitative quality assurance evaluation method for resolution characteristics was applied mutatis mutandis, and the result values of the physical image characteristics of the 3.0T MRI device were presented.

Evaluation of the Resolution Characteristics by Using ATS 535H Phantom for Ultrasound Medical Imaging (초음파 의료영상에서 ATS 535H 팬텀을 이용한 해상력 특성 평가)

  • Jung-Whan, Min;Hoi-Woun, Jeong;Hea-Kyung, Kang
    • Journal of radiological science and technology
    • /
    • v.46 no.1
    • /
    • pp.15-21
    • /
    • 2023
  • This study was purpose to assessment of the resolution characteristics by using ATS 535H Basic quality assurance (QA) phantom for ultrasound. The ultrasound equipment was used Logiq P6 (Ultrasound, GE Healthcare System, Chicago, IL, USA). And the ultrasound transducer were used Convex 4C (4~5.5 MHz), Linear 11L (10~13 MHz), Sector 3SP (3~5.5 MHz) probe. As for the noise power spectrum (NPS) comparison results by using ATS 535H Basic QA ultrasound phantom and Convex 4C, Linear 11L, Sector 3SP probe. The NPS value of the Convex 4C probe image was 0.0049, Linear 11L probe image was 0.0049, Sector 3SP probe image was 0.1422 when the frequency is 1.0 mm-1. The modulation transfer function (MTF) comparison results by using ATS 535H Basic QA ultrasound phantom and Linear 11L probe the MTF value of the 3 cm focus image was 0.7511 and 4 cm focus image was 0.9001 when the frequency is 1.0 mm-1. This study was presented characteristics of spatial resolution a quantitative evaluation methods by using ultrasound medical images for QA of ultrasound medical QA phantom. The quality control (QC) for equipment maintenance can be efficiently used in the clinic due to the quantitative evaluation of the NPS and MTF as the standard methods. It is meaningful in that it is applied mutatis mutandis and presented the results of physical resolution characteristics of the ultrasound medical image.