• Title/Summary/Keyword: 변조기

Search Result 1,318, Processing Time 0.033 seconds

Effect of Transverse Magnetic Field on Build-up Region of 6 MV Photon Beam (6 MV 광자선의 선량 상승 영역에 대한 자기장 영향)

  • Shin, Seong Soo;Choi, Wonsik;Ahn, Woo Sang;Kwak, Jungwon
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.1
    • /
    • pp.18-22
    • /
    • 2017
  • The purpose of this study was to present an improved method of dose modulation over the increase of build-up for existing 6 MV photon beam. Two neodymium permanent magnets with a strength of 0.5 T (Tesla) were applied with a magnetic field perpendicular to the photon beam. The effects of dose on build-up region with or without the magnetic field were measured according to the magnet-to-magnet distance (MMS) and the magnet-to-surface distance (MSD). For MMS = 6 cm and MSD = 2.5 cm, $D_{0mm}$, $D_{2mm}$, $D_{5mm}$, and $D_{10mm}$ showed improved doses of 6.8 %, 14.6 %, 6.9 %, and 2.1 %, respectively, as compared with 6 MV open beam. In this study, the device with low strength magnetic field can be applied directly to the outside of the human body when the target volume located close to the skin is delivered with radiation. It is expected that the method of build-up modulation using a low strength magnetic field will be feasible in the clinical applications.

Fabrication and performance analysis of cost-effective fiber grating lasers for WDM-PON systems (WDM-PON 시스템용 저가형 Fiber Grating Laser의 제작 및 성능 분석)

  • Cho, Seung-Hyun;Lee, Woo-Ram;Lee, Jie-Hyun;Park, Jae-Dong;Kim, Byoung-Whi;Kang, Min-Ho;Shin, Dong-Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.1
    • /
    • pp.13-20
    • /
    • 2005
  • Fiber-Bragg-grating external cavity laser(FGL) modules were fabricated and experimentally analyzed. Proposed as a cost-effective solution for optical sources in the WDM-PON access network, FGL modules were packaged to TO-CAN type. We obtained a low threshold current of 13 mA, and an optical output power of 3.6 mW with a bias current of 60 mA at $25^{\circ}C$. The lasing wavelength dependencies on current and temperature were as small as 5.2 pm/mA and 30 pm/$^{\circ}C$, respectively. These change rates of the wavelength with the temperature and current are smaller than those of the DFB laser. Single-mode oscillations with the side-mode suppression ratio(SMSR) over 30 dB are maintained above the threshold current level. The FGL modules can be directly modulated at 155 Mbps, PRBS(2$^{23}$ -1) NRZ signal. Through the BER plots, we did not see the significant degradations before and after the transmission over 20km of the SMF at 155 Mb/s.

An analysis on Flicker Phenomenon of a Fluorescent lights for the commercial operating EMU (영업운행 전동차 객실형광등의 플리커(Flicker) 현상에 관한 분석 연구)

  • Ha, Jong-Eun;Han, Seon-Ho;Park, Jae-Hong;Lee, Dae-Won
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1240-1246
    • /
    • 2006
  • Generally, there are two types of main factors to affect output power quality of a auxiliary power supply an EMU(electric multiple unit). One is a voltage flicker by amplitude modulation of short time and air compressors. The other is repetitive motion of large capacity motor such as air compressors, HVAC unit etc. in main factors. This paper compared two kinds of fluorescent lamp, 32W (after remodeling interior) and 40W(before remodeling interior) and measured the light output varying input power(AC220V) for a flicker phenomenon related power supply of lamps in EMU. Also, we analyzed a flicker considering EMU operating time and density in order to grasp main factors of a load change to cause a voltage change. As a results of test, a 40W fluorescent lamp was more insensitive with 20.26% degree an eye recognition degree sides about changes of the input power and lower with 19.9% voltage side generating flicker compare with fluorescent lamp 32W. Also, we confirmed the fact which the fluorescent lamp flicker was generated by varying fluorescent lamp output voltage when the commercial EMU was in high driving density and at the busy time. Additionally, we confirmed the frequency band which an EMU passenger could feel sensitively blinking of a fluorescent lamp was visually $8Hz{\sim}15Hz$.

  • PDF

A Study on the Development of SSB Modem (디지털 SSB 모뎀 개발에 관한 연구)

  • Kim, Jeong-Nyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.10
    • /
    • pp.1852-1857
    • /
    • 2007
  • The SSB modem performs the modulation process which converts the digital voltage level to the audible frequency band signal and the demodulation process which converts reversely the audible frequency signal to the digital voltage level. The modulator and the demodulator are implemented with a single DSP chip. Because of the SSB specific character, the distortion occurs when the frequency is changed. This distortion has no effect on voice communication but it has an significant effect on data communication. In other words, it is impossible to send data stream with adjacent 2 periods. Therefore, in case of using 2-tone FSK, it is needed to send at least 3 periods to transmit 1 bit. Therefore we implemented the modem using modified phase-delay shift keying to transmit 1 tone signal for high speed transmission. In the 1200[bps] mode, it generates 0, $187{\mu}s$, delay time at 1.3kHz symbol frequency, and in the 2400[bps] mode, 0, $70{\mu}s\;130{\mu}s\;200{\mu}s$, delay time at 1.5kHz symbol frequency. Finally, in the maximum 3600[bps] mode, it generates 0, $100{\mu}s\;160{\mu}s\;250{\mu}s$ 2.0kHz symbol frequency. The measured results of the implemented SSB modem shows a good transfer functional characteristic by spectrum analyzer, almost same bandwidth in pass band and 20dB higher SNR comparing the emu FACTOR and American CLOVER and in the experimental transmitting test, we verified the transmitted data is received correctly in platform.

In-Band Full-Duplex Wireless Communication Using USRP (USRP 장치를 이용한 동일대역 전이중 무선통신 연구)

  • Park, Haeun;Yoon, Jiyong;Kim, Youngsik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.3
    • /
    • pp.229-235
    • /
    • 2019
  • The implementation of an in-band full-duplex wireless communication system is demonstrated in this study. In the analog/RF domain, the self-interference(SI) signal is reduced using a separate antenna for the transmitter and receiver paths, and most of the SI signal is canceled in the digital domain. A software defined radio(SDR) is used to implement the in-band full-duplex wireless communication system. The USRP X310 device uses transmitting and receiving antennas. By adjusting the gain of the transmitting and receiving ends of the SDR device, the magnitude of the SI signal entering the receiving antenna, and the size of the received signal from the outside, are both set to -64 dB. To verify the in-band full-duplex wireless communication performance, the source data is image and orthogonal frequency-division multiplexing is used for modulation. A WiFi standard frame with a carrier frequency of 2.67 GHz and bandwidth of 20 MHz is used. In the received signal, the SI signal is canceled by digital signal processing and the SI signal is attenuated by up to 34 dB. OFDM demodulation was impossible when the SI signal was not removed. However, the bit error rate is reduced to $2.63{\times}10^{-5}$ when the SI signal is attenuated by 34 dB, and no error is detected in the 100 Mbit data output as a result of passing through the Viterbi decoder.

The efficient DC-link voltage design of the Type 4 wind turbine that satisfies HVRT function requirements (HVRT 기능 요구조건을 만족하는 Type 4 풍력 발전기의 효율적인 직류단 전압 설계)

  • Baek, Seung-Hyuk;Kim, Sungmin
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.399-407
    • /
    • 2021
  • This paper proposes the DC-link voltage design method of Type 4 wind turbine that minimizes power loss and satisfies the High Voltage Ride Through(HVRT) function requirements of the transmission system operator. The Type 4 wind turbine used for large-capacity offshore wind turbine consists of the Back-to-Back converter in which the converter linked to the power grid and the inverter linked to the wind turbine share the DC-link. When the grid high voltage fault occurs in the Type 4 wind turbine, if the DC-link voltage is insufficient compared to the fault voltage level, the current controller of the grid-side converter can't operate smoothly due to over modulation. Therefore, to satisfy the HVRT function, the DC-link voltage should be designed based on the voltage level of high voltage fault. However, steady-state switching losses increase further as the DC-link voltage increases. Therefore, the considerations should be included for the loss to be increased when the DC-link voltage is designed significantly. In this paper, the design method for the DC-link voltage considered the fault voltage level and the loss is explained, and the validity of the proposed design method is verified through the HVRT function simulation based on the PSCAD model of the 2MVA Type 4 wind turbine.

Estimation of Significant Wave Heights from X-Band Radar Based on ANN Using CNN Rainfall Classifier (CNN 강우여부 분류기를 적용한 ANN 기반 X-Band 레이다 유의파고 보정)

  • Kim, Heeyeon;Ahn, Kyungmo;Oh, Chanyeong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.3
    • /
    • pp.101-109
    • /
    • 2021
  • Wave observations using a marine X-band radar are conducted by analyzing the backscattered radar signal from sea surfaces. Wave parameters are extracted using Modulation Transfer Function obtained from 3D wave number and frequency spectra which are calculated by 3D FFT of time series of sea surface images (42 images per minute). The accuracy of estimation of the significant wave height is, therefore, critically dependent on the quality of radar images. Wave observations during Typhoon Maysak and Haishen in the summer of 2020 show large errors in the estimation of the significant wave heights. It is because of the deteriorated radar images due to raindrops falling on the sea surface. This paper presents the algorithm developed to increase the accuracy of wave heights estimation from radar images by adopting convolution neural network(CNN) which automatically classify radar images into rain and non-rain cases. Then, an algorithm for deriving the Hs is proposed by creating different ANN models and selectively applying them according to the rain or non-rain cases. The developed algorithm applied to heavy rain cases during typhoons and showed critically improved results.

Hybrid CMA-ES/SPGD Algorithm for Phase Control of a Coherent Beam Combining System and its Performance Analysis by Numerical Simulations (CMA-ES/SPGD 이중 알고리즘을 통한 결맞음 빔 결합 시스템 위상제어 및 동작성능에 대한 전산모사 분석)

  • Minsu, Yeo;Hansol, Kim;Yoonchan, Jeong
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • In this study, we propose a hybrid phase-control algorithm for multi-channel coherent beam combining (CBC) system by combining the covariant matrix adaption evolution strategy (CMA-ES) and stochastic parallel gradient descent (SPGD) algorithms and analyze its operational performance. The proposed hybrid CMA-ES/SPGD algorithm is a sequential process which initially runs the CMA-ES algorithm until the combined final output intensity reaches a preset interim value, and then switches to running the SPGD algorithm to the end of the whole process. For ideal 7-channel and 19-channel all-fiber-based CBC systems, we have found that the mean convergence time can be reduced by about 10% in comparison with the case when the SPGD algorithm is implemented alone. Furthermore, we analyzed a more realistic situation in which some additional phase noise was introduced in the same CBC system. As a result, it is shown that the proposed algorithm reduces the mean convergence time by about 17% for a 7-channel CBC system and 16-27% for a 19-channel system compared to the existing SPGD alone algorithm. We expect that for implementing a CBC system in a real outdoor environment where phase noise cannot be ignored, the hybrid CMA-ES/SPGD algorithm proposed in this study will be exploited very usefully.

An Efficient Wireless Signal Classification Based on Data Augmentation (데이터 증강 기반 효율적인 무선 신호 분류 연구 )

  • Sangsoon Lim
    • Journal of Platform Technology
    • /
    • v.10 no.4
    • /
    • pp.47-55
    • /
    • 2022
  • Recently, diverse devices using different wireless technologies are gradually increasing in the IoT environment. In particular, it is essential to design an efficient feature extraction approach and detect the exact types of radio signals in order to accurately identify various radio signal modulation techniques. However, it is difficult to gather labeled wireless signal in a real environment due to the complexity of the process. In addition, various learning techniques based on deep learning have been proposed for wireless signal classification. In the case of deep learning, if the training dataset is not enough, it frequently meets the overfitting problem, which causes performance degradation of wireless signal classification techniques using deep learning models. In this paper, we propose a generative adversarial network(GAN) based on data augmentation techniques to improve classification performance when various wireless signals exist. When there are various types of wireless signals to be classified, if the amount of data representing a specific radio signal is small or unbalanced, the proposed solution is used to increase the amount of data related to the required wireless signal. In order to verify the validity of the proposed data augmentation algorithm, we generated the additional data for the specific wireless signal and implemented a CNN and LSTM-based wireless signal classifier based on the result of balancing. The experimental results show that the classification accuracy of the proposed solution is higher than when the data is unbalanced.

A Study on the Power Converter Control of Utility Interactive Photovoltaic Generation System (계통 연계형 태양광 발전시스템의 전력변환기 제어에 관한 연구)

  • Na, Seung-Kwon;Ku, Gi-Jun;Kim, Gye-Kuk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.2
    • /
    • pp.157-168
    • /
    • 2009
  • In this paper, a photovoltaic system is designed with a step up chopper and single phase PWM(Pulse Width Modulation) voltage source inverter. Where proposed Synchronous signal and control signal was processed by one-chip microprocessor for stable modulation. The step up chopper operates in continuous mode by adjusting the duty ratio so that the photovoltaic system tracks the maximum power point of solar cell without any influence on the variation of insolation and temperature because solar cell has typical voltage and current dropping character. The single phase PWM voltage source the inverter using inverter consists of complex type of electric power converter to compensate for the defect, that is, solar cell cannot be developed continuously by connecting with the source of electric power for ordinary use. It can cause the effect of saving electric power. from 10 to 20[%]. The single phase PWM voltage source inverter operates in situation that its output voltage is in same phase with the utility voltage. In order to enhance the efficiency of photovoltaic cells, photovoltaic positioning system using sensor and microprocessor was design so that the fixed type of photovoltaic cells and photovoltaic positioning system were compared. In result, photovoltaic positioning system can improved 5% than fixed type of photovoltaic cells. In addition, I connected extra power to the system through operating the system voltage and inverter power in a synchronized way by extracting the system voltage so that the phase of the system and the phase of single-phase inverter of PWM voltage type can be synchronized. And, It controlled in order to provide stable pier to the load and the system through maintaining high lurer factor and low output power of harmonics.